Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications
- Corresponding author: Jianbo LIU, liujianbo@hnu.edu.cn
Citation: Zhaoxin LI, Ruibo WEI, Min ZHANG, Zefeng WANG, Jing ZHENG, Jianbo LIU. Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235
Szostak J W, Bartel D P, Luisi L P. Synthesizing life[J]. Nature, 2001,409:387-390. doi: 10.1038/35053176
Mann S. Systems of creation: The emergence of life from nonliving matter[J]. Acc. Chem. Res., 2012,45(12):2131-2141. doi: 10.1021/ar200281t
Gozen I. A hypothesis for protocell division on the early earth[J]. ACS Nano, 2019,13:10869-10871. doi: 10.1021/acsnano.9b06584
Teo B M, Rigau L H, Lynge M E, Stadler B. Liposome-containing polymer films and colloidal assemblies towards biomedical applications[J]. Nanoscale, 2014,6:6426-6433. doi: 10.1039/c4nr00459kr200281t
Ryu K J, Lee J Y, Park C, Cho D, Kim S J. Isolation of small extracellular vesicles from human serum using a combination of ultracentrifugation with polymer-based precipitation[J]. Ann. Lab. Med., 2020,40(3):253-258. doi: 10.3343/alm.2020.40.3.253
Lange N D, Leermakers F A M, Kleijn J M. Self-limiting aggregation of phospholipid vesicles[J]. Soft Matter, 2020,16(9):2379-2389. doi: 10.1039/C9SM01692A
Wang W, Li B Y, Zhang M J, Su Y Y, Pan D W, Liu Z, Ju X J, Xie R, Faraj Y, Chu L Y. Microfluidic emulsification techniques for controllable emulsion production and functional microparticle synthesis[J]. Chem. Eng. J., 2023,452(1)139277.
Vian A, Amstad E. Mechano-responsive microcapsules with uniform thin shells[J]. Soft Matter, 2019,15(6):1290-1296. doi: 10.1039/C8SM02047G
Ballard N, Law A D, Bon F. Colloidal particles at fluid interfaces: Behaviour of isolated particles[J]. Soft Matter, 2019,15(6):1186-1199. doi: 10.1039/C8SM02048E
Kumar R K, Li M, Olof S N, Patil A J, Mann S. Artificial cytoskeletal structures within enzymatically active bio‑inorganic protocells[J]. Small, 2013,9(3):357-362. doi: 10.1002/smll.201201539
He J, Liu Y J, Babu T, Wei Z J, Nie Z H. Self-assembly of inorganic nanoparticle vesicles and tubules driven by tethered linear block copolymers[J]. J. Am. Chem. Soc., 2012,134:11342-11345. doi: 10.1021/ja3032295
Lai Q S, Li X X, Zheng S T. All-inorganic POM cages and their assembly: A review[J]. Coord. Chem. Rev., 2023,482215077. doi: 10.1016/j.ccr.2023.215077
Gao Y Y, Szymanowski J E S, Sun X Y, Burns P C, Liu T B. Thermal responsive ion selectivity of uranyl peroxide nanocages: An inorganic mimic of K+ ion channels[J]. Angew. Chem. Int. Ed., 2016,128:7001-7005. doi: 10.1002/ange.201601852
Kamiya K, Kawano R, Osaki T, Akiyoshi K, Takeuchi S. Cell-sized asymmetric lipid vesicles facilitate the investigation of asymmetric membranes[J]. Nat. Chem., 2016,8:881-889. doi: 10.1038/nchem.2537
Koga S, Williams D S, Perriman A W, Mann S. Peptide-nucleotide microdroplets as a step towards a membrane-free protocell model[J]. Nat. Chem., 2011,3(9):720-724. doi: 10.1038/nchem.1110
Liu X L, Formanek P, Voit B, Appelhans D. Functional cellular mimics for the spatiotemporal control of multiple enzymatic cascade reactions[J]. Angew. Chem. Int. Ed., 2017,56:16233-16238.
Dinsmore A D, Hsu M F, Nikolaides M G, Marquez M, Bausch A R, Weitz D A. Colloidosomes: Selectively permeable capsules composed of colloidal particles[J]. Science, 2002,298:1006-1009. doi: 10.1126/science.1074868
Wang H L, Zhu X M, Tsarkova L, Pich A, Moller M. All-silica colloidosomes with a particle-bilayer shell[J]. ACS Nano, 2011,5(5):3937-3942. doi: 10.1021/nn200436s
Huang X, Li M, Green D C, Williams D S, Patil A J, Mann S. Interfacial assembly of protein-polymer nano-conjugates into stimulus- responsive biomimetic protocells[J]. Nat. Commun., 2013,4(1)2239. doi: 10.1038/ncomms3239
Wang X J, Du H, Wang Z, Mu W, Han X J. Versatile phospholipid assemblies for functional synthetic cells and artificial tissues[J]. Adv. Mater., 2021,33(6)2002635. doi: 10.1002/adma.202002635
Reardon S. How synthetic biologists are building better biofactories[J]. Nature, 2024,628:224-226. doi: 10.1038/d41586-024-00907-x
Rycroft M J. Earth: Evolution of a habitable world[J]. J. Atmos. Sol. —Terr. Phy., 2000,62(2):147-148. doi: 10.1016/S1364-6826(99)00112-1
Bernal J D. The physical basis of life[J]. Proc. Phys. Soc. A, 1949,62:537-558. doi: 10.1088/0370-1298/62/9/301
Blochl E, Keller M, Wachtershauser G, Stetter K O. Reactions depending on iron sulfide and linking geochemistry with biochemistry[J]. Proc. Natl. Acad. Sci. U. S. A., 1992,89(17):8117-8120. doi: 10.1073/pnas.89.17.8117
Russell M J, Hall A J. The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front[J]. J. Geol. Soc. London, 1997,154:377-402. doi: 10.1144/gsjgs.154.3.0377
Alpermann T, Rudel K, Ruger R, Steiniger F, Nietzsche S, Filiz V, Forster S, Fahr A, Weigand W. Polymersomes containing iron sulfide (FeS) as primordial cell model: For the investigation of energy providing redox reactions[J]. Orig. Life Evol. Biosph., 2011,41:103-119. doi: 10.1007/s11084-010-9223-0
Morasch M, Liu J, Dirscherl C F, Ianeselli A, Kuhnlein A, Vay K L, Schwintek P, Islam S, Corpinot M K, Scheu B, Dingwell D B, Schwille P, Mutschler H, Powner M W, Mast C B, Braun D. Heated gas bubbles enrich, crystallize, dry, phosphorylate and encapsulate prebiotic molecules[J]. Nat. Chem., 2019,11779. doi: 10.1038/s41557-019-0299-5
Hansma H G. Possible origin of life between mica sheets[J]. J. Theor. Biol., 2010,266(1):175-188. doi: 10.1016/j.jtbi.2010.06.016
Hanczyc M M, Mansy S S, Szostak J W. Mineral surface directed membrane assembly[J]. Orig. Life Evol. Biosph., 2006,37:67-82.
Egel R. Origins and emergent evolution of life: the colloid microsphere hypothesis revisited[J]. Orig. Life Evol. Biosph., 2014,44:87-110. doi: 10.1007/s11084-014-9363-8
Lane N, Martin W F. The origin of membrane bioenergetics[J]. Cell, 2012,151:1406-1416. doi: 10.1016/j.cell.2012.11.050
Wachtershauser G. Groundworks for an evolutionary biochemistry: The iron-sulfur world[J]. Prog. Biophys. Mol. Biol., 1992,58:85-201. doi: 10.1016/0079-6107(92)90022-X
Cody G D, Boctor N Z, Filley T R, Hazen R M, Scott J H, Sharma A, Yoder H S J. Primordial carbonylated iron-sulfur compounds and synthesis of pyruvate[J]. Science, 2000,289:1337-1340. doi: 10.1126/science.289.5483.1337
Keller M, Blochl E, Wachtershauser G, Stetter K O. Formation of amide bonds without a condensation agent and implications for origin of life[J]. Nature, 1994,368:836-838. doi: 10.1038/368836a0
Kuchler A, Yoshimoto M, Luginbuhl S, Mavelli F, Walde P. Enzymatic reactions in confined environments[J]. Nat. Nanotechnol., 2016,11(5):409-420. doi: 10.1038/nnano.2016.54
Buddingh B C, Jan C M. Artificial cells: Synthetic compartments with life-like functionality and adaptivity[J]. Acc. Chem. Res., 2017,50(4):769-777. doi: 10.1021/acs.accounts.6b00512
Xu Z, Hueckel T, Irvine W T M, Sacanna S. Transmembrane transport in inorganic colloidal cell-mimics[J]. Nature, 2021,597:220-224. doi: 10.1038/s41586-021-03774-y
Fernandez C D J, Vazquez A. A physical model of cell metabolism[J]. Sci. Rep., 2018,8(1)8349. doi: 10.1038/s41598-018-26724-7
Noireaux V, Libchaber A. A vesicle bioreactor as a step toward an artificial cell assembly[J]. Proc. Natl. Acad. Sci. U. S. A., 2004,101(51):17669-17674. doi: 10.1073/pnas.0408236101
Liu J, Guo Z Y, Liang K. Biocatalytic metal‐organic framework‐based artificial cells[J]. Adv. Funct. Mater., 2019,29(45)1905321. doi: 10.1002/adfm.201905321
Hunter S J, Cornel E J, Mykhaylyk O O, Armes S P. Effect of salt on the formation and stability of water-in-oil pickering nanoemulsions stabilized by diblock copolymer nanoparticles[J]. Langmuir, 2020,36(51):15523-15535. doi: 10.1021/acs.langmuir.0c02742
Thompson K L, Williams M, Armes S P. Colloidosomes: Synthesis, properties and applications[J]. J. Colloid Interface Sci., 2015,447:217-228. doi: 10.1016/j.jcis.2014.11.058
Wu H, Du X L, Meng X H, Qiu D, Qiao Y. A three-tiered colloidosomal microreactor for continuous flow catalysis[J]. Nat. Commun., 2021,126113. doi: 10.1038/s41467-021-26381-x
Li M, Harbron R L, Weaver J V M, Binks B P, Mann S. Electrostatically gated membrane permeability in inorganic protocells[J]. Nat. Chem., 2013,5:529-536. doi: 10.1038/nchem.1644
Haufova P, Dohnal J, Hanus J, Stepanek F. Towards the inkjet fabrication of artificial cells[J]. Colloid Surface A, 2012,410:52-58. doi: 10.1016/j.colsurfa.2012.06.014
Subramaniam A B, Wan J, Gopinathc A, Stone H A. Semipermeable vesicles composed of natural clay[J]. Soft Matter, 2011,7:2600-2612. doi: 10.1039/c0sm01354d
Sun S Y, Li M, Dong F Q, Wang S J, Tian L F, Mann S. Chemical signaling and functional activation in colloidosome-based protocells[J]. Small, 2016,12:1920-1927. doi: 10.1002/smll.201600243
Kumar B V V S P, Patil A J, Mann S. Enzyme-powered motility in buoyant organoclay/DNA protocells[J]. Nat. Chem., 2018,10:1154-1163. doi: 10.1038/s41557-018-0119-3
Tan C, Dima C, Huang M, Assadpour E, Wang J, Sun B G, Kharazmi M S, Jafari S M. Advanced CaCO3-derived delivery systems for bioactive compounds[J]. Adv. Colloid Interface, 2022,309102791. doi: 10.1016/j.cis.2022.102791
Wang C Y, Liu H X, Gao Q X, Liu X X, Tong Z. Facile fabrication of hybrid colloidosomes with alginate gel cores and shells of porous CaCO3 microparticles[J]. ChemPhysChem, 2007,8:1157-1160. doi: 10.1002/cphc.200700147-3
Pang M L, Cairns A J, Liu Y L, Belmabkhout Y, Zeng H C, Eddaoudi M. Synthesis and integration of Fe-soc-MOF cubes into colloidosomes via a single-step emulsion-based approach[J]. J. Am. Chem. Soc., 2013,135:10234-10237. doi: 10.1021/ja403994u
Huang H, Li J, Yuan M G, Yang H W, Zhao Y, Ying Y L, Wang S. Large‑scale self‑assembly of MOFs colloidosomes for bubble‑ propelled micromotors and stirring‐free environmental remediation[J]. Angew. Chem. Int. Ed., 2022,134(46)e202211163. doi: 10.1002/ange.202211163
Fonseca J, Meng L X, Imaz I, Maspoch D. Self-assembly of colloidal metal-organic framework (MOF) particles[J]. Chem. Soc. Rev., 2023,52(7):2528-2543. doi: 10.1039/D2CS00858K
Demina P A, Bukreeva T V. Pickering emulsion stabilized by commercial titanium dioxide nanoparticles in the form of rutile and anatase[J]. Nanotechnol. Russ., 2018,13:425-429. doi: 10.1134/S1995078018040043
Quang G C P, Wee E H Z, Yang F L, Lee H K, Phang I Y, Feng X T, Puebla R A A, Ling X Y. Online flowing colloidosomes for sequential multi-analyte high-throughput SERS analysis[J]. Angew. Chem. Int. Ed., 2017,56:5565-5569. doi: 10.1002/anie.201702374
Zhou S J, Narutaki A S, Tsuboike S, Wang J Z, Shimojima A, Okubo T. Nanoparticle vesicles with controllable surface topographies through block copolymer-mediated self-assembly of silica nanospheres[J]. Langmuir, 2015,31(48):13214-13220. doi: 10.1021/acs.langmuir.5b03424
Li M, Green D C, Anderson J L R, Binks B P, Mann S. In vitro gene expression and enzyme catalysis in bio-inorganic protocells[J]. Chem. Sci., 2011,2:1739-1745. doi: 10.1039/c1sc00183c
Xu Q, Zhang Z P, Lui P P Y, Lu L, Li X W, Zhang X. Preparation and biomedical applications of artificial cells[J]. Mater. Today Bio, 2023,23100877. doi: 10.1016/j.mtbio.2023.100877
Li S, Moosa B A, Croissant J G, Khashab P N M. Electrostatic assembly/disassembly of nanoscaled colloidosomes for light-triggered cargo release[J]. Angew. Chem. Int. Ed., 2015,54(23):6804-6808. doi: 10.1002/anie.201501615
Bollhorst T, Grieb T, Rosenauer A, Fuller G, Maas M, Rezwan K. Synthesis route for the self-assembly of submicrometer sized colloidosomes with tailorable nanopores[J]. Chem. Mater., 2013,25:3464-3471. doi: 10.1021/cm401610a
Zhou S B, Fan J, Datta S S, Guo M, Guo X, Weitz D A. Thermally switched release from nanoparticle colloidosomes[J]. Adv. Funct. Mater., 2013,23:5925-5929. doi: 10.1002/adfm.201301030
Yin W, Wang Y Y, Liu H Y, Sun M M, Zhang Y L, Yuan H, Guo T, Meng T. SCbots: Stomatocyte-like colloidosomes as versatile microrobots fabricated by one-step self-assembly[J]. Chem. Eng. J., 2024,490151952. doi: 10.1016/j.cej.2024.151952
Akkarachaneeyakorn K, Li M, Davis S A, Mann S. Secretion and reversible assembly of extracellular-like matrix by enzyme-active colloidosome-based protocells[J]. Langmuir, 2016,32(12):2912-2919. doi: 10.1021/acs.langmuir.6b00553952
Hann S D, Stebe K J, Lee D. AWE-somes: All water emulsion bodies with permeable shells and selective compartments[J]. ACS Appl. Mater. Interfaces, 2017,9(29):25023-25028. doi: 10.1021/acsami.7b05800
Liu Z N, Wang B D, Jin S H, Wang Z D, Wang L, Liang S. Bioinspired dual-enzyme colloidosome reactors for high-performance biphasic catalysis[J]. ACS Appl. Mater. Interfaces, 2018,10(48):41504-41511. doi: 10.1021/acsami.8b14321
Hao R, Xing R J, Xu Z C, Hou Y L, Gao S, Sun S H. Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles[J]. Adv. Mater., 2010,22(25):2729-2742. doi: 10.1002/adma.201000260
Wu L H, Garcia A M, Li Q, Sun S H. Organic phase syntheses of magnetic nanoparticles and their applications[J]. Chem. Rev., 2016,116(18):10473-10512. doi: 10.1021/acs.chemrev.5b00687
Zhu K, Ju Y M, Xu J J, Yang Z Y, Gao S, Hou Y L. Magnetic nanomaterials: Chemical design, synthesis, and potential applications[J]. Acc. Chem. Res., 2018,51(2):404-413. doi: 10.1021/acs.accounts.7b00407
Qu Y N, Huang R L, Qi W, Qu Q, Su R X, He Z M. Structural insight into stabilization of pickering emulsions with Fe3O4@SiO2 nanoparticles for enzyme catalysis in organic media[J]. Part. Part. Syst. Char., 2017,34(7)1700117. doi: 10.1002/ppsc.201700117
Peng H B, Tang J, Zheng R, Guo G N, Dong A G, Wang Y J, Yang W L. Nuclear-targeted multifunctional magnetic nanoparticles for photothermal therapy[J]. Adv. Healthc. Mater., 2017,6(7)1601289. doi: 10.1002/adhm.201601289
Ren X Q, Zheng R, Fang X L, Wang X F, Zhang X Y, Yang W L, Sha X Y. Red blood cell membrane camouflaged magnetic nanoclusters for imaging-guided photothermal therapy[J]. Biomaterials, 2016,92:13-24. doi: 10.1016/j.biomaterials.2016.03.026
Hou S A, Bai L, Lu D R, Duan H W. Interfacial colloidal self-assembly for functional materials[J]. Acc. Chem. Res., 2023,56(7):740-751. doi: 10.1021/acs.accounts.2c00705
Duan H W, Wang D Y, Sobal N S, Giersig M, Kurth D G, Mohwald H. Magnetic colloidosomes derived from nanoparticle interfacial self-assembly[J]. Nano Lett., 2005,5(5):949-952. doi: 10.1021/nl0505391
Zhang L, Zhang F, Wang Y S, Sun Y L, Dong W F, Song J F, Huo Q S, Sun H B. Magnetic colloidosomes fabricated by Fe3O4-SiO2 hetero-nanorods[J]. Soft Matter, 2011,7:7375-7381. doi: 10.1039/c1sm05184a
Bollhorst T, Shahabi S, Worz K, Petters C, Dringen R, Maas M, Rezwan K. Bifunctional submicron colloidosomes coassembled from fluorescent and superparamagnetic nanoparticles[J]. Angew. Chem. Int. Ed., 2015,54(1):118-123. doi: 10.1002/anie.201408515
Ku K H, Li J, Yoshinaga K, Swager T M. Dynamically reconfigurable, multifunctional emulsions with controllable structure and movement[J]. Adv. Mater., 2019,311905569. doi: 10.1002/adma.201905569
Sharifabad M E, Mercer T, Sen T. Drug-loaded liposome-capped mesoporous core-shell magnetic nanoparticles for cellular toxicity study[J]. Nanomedicine, 2016,11(21):2753-2755.
Xuan M J, Shao J X, Zhao J, Li Q, Dai L R, Li J B. Magnetic mesoporous silica nanoparticles cloaked by red blood cell membranes: Applications in cancer therapy[J]. Angew. Chem. Int. Ed., 2018,57(21):6049-6053. doi: 10.1002/anie.201712996
Granath T, Sanchez A S, Shmeliov A, Nicolosi V, Fierro V, Celzard A, Mandel K. Hollow superparamagnetic microballoons from lifelike, self-directed pickering emulsions based on patchy nanoparticles[J]. ACS Nano, 2016,10(11):10347-10356. doi: 10.1021/acsnano.6b06063
Arco L R, Li M, Mann S. Phagocytosis-inspired behaviour in synthetic protocell communities of compartmentalized colloidal objects[J]. Nat. Mater., 2017,16:857-863. doi: 10.1038/nmat4916
Arco L R, Kumar B V V S P, Li M, Patil A J, Mann S. Modulation of higher-order behaviour in model protocell communities by artificial phagocytosis[J]. Angew. Chem. Int. Ed., 2019,58(19):6333-6337. doi: 10.1002/anie.201901469
Long D L, Tsunashima R, Cronin L. Polyoxometalates: building blocks for functional nanoscale systems[J]. Angew. Chem. Int. Ed., 2010,49(10):1736-1758. doi: 10.1002/anie.200902483
Naskar B, Diat O, Rataj V N, Bauduin P. Nanometer-size polyoxometalate anions adsorb strongly on neutral soft surfaces[J]. J. Phys. Chem. C, 2015,119(36):20985-20992. doi: 10.1021/acs.jpcc.5b06273
Barba B A, Salluce G, Seijo L I, Assaf K I, Hennig A, Montenegro J, Nau W M. Boron clusters as broadband membrane carriers[J]. Nature, 2022,603:637-642. doi: 10.1038/s41586-022-04413-w
Bijelic A, Aureliano M, Rompel A. Polyoxometalates as potential next-generation metallodrugs in the combat against cancer[J]. Angew. Chem. Int. Ed., 2019,58(10):2980-2999. doi: 10.1002/anie.201803868
Bijelic A, Rompel A. The use of polyoxometalates in protein crystallography-an attempt to widen a well-known bottleneck[J]. Coord. Chem. Rev., 2015,299:22-38. doi: 10.1016/j.ccr.2015.03.018
Rehder D. Structure and function of vanadium compounds in living organisms[J]. Biometals, 1992,5:3-12. doi: 10.1007/BF01079691
Milojevic T, Albu M, Blazevic A, Gumerova N, Konrad L, Cyran N. Nanoscale tungsten-microbial interface of the metal immobilizing thermoacidophilic archaeon metallosphaera sedula cultivated with tungsten polyoxometalate[J]. Front. Microbiol., 2019,101267. doi: 10.3389/fmicb.2019.01267
Muller A, Rehder D, Haupt E T K, Merca A, Bogge H, Schmidtmann M, Bruckner G H. Artificial cells: Temperature-dependent, reversible Li‑ion uptake/release equilibrium at metal oxide nanocontainer pores[J]. Angew. Chem. Int. Ed., 2004,43(34):4466-4470. doi: 10.1002/anie.200453762
Muller A, Das S K, Talismanov S, Roy S, Beckmann E, Bogge H, Schmidtmann M, Merca A, Berkle A, Allouche L, Zhou Y S, Zhang L J. Trapping cations in specific positions in tuneable "artificial cell" channels: New nanochemistry perspectives[J]. Angew. Chem. Int. Ed., 2003,42(41):5039-5044. doi: 10.1002/anie.200352358
Ma X Q, Xiao H P, Chen Y, Lai Q S, Li X X, Zheng S T. Polyoxometalate-based macrocycles and their assembly[J]. Coord. Chem. Rev., 2024,510215818. doi: 10.1016/j.ccr.2024.215818
Cooper G J T, Kitson P J, Winter R, Zagnoni M, Long D L, Cronin L. Modular redox-active inorganic chemical cells: iCHELLs[J]. Angew. Chem. Int. Ed., 2011,50(44):10373-10376. doi: 10.1002/anie.201105068
Nakanishi K, Cooper G J T, Points L J, Bloor L G, Ohba M, Cronin L. Development of a minimal photosystem for hydrogen production in inorganic chemical cells[J]. Angew. Chem. Int. Ed., 2018,57(40):13066-13070. doi: 10.1002/anie.201805584
Li K, Zhang S, Zhu K L, Cui L P, Yang L, Chen J J. Revealing the electrocatalytic self-assembly route from building blocks into giant Mo-blue clusters[J]. J. Am. Chem. Soc., 2023,145(45):24889-24896.
Huang C L, Chai Y, Jiang Y F, Forth J, Ashby P D, Arras M M L, Hong K, Smith G S, Yin P C, Russell T P. The interfacial assembly of polyoxometalate nanoparticle surfactants[J]. Nano Lett., 2018,18(4):2525-2529. doi: 10.1021/acs.nanolett.8b00208
Maayan G, Biro R P, Neumann R. Micelle directed synthesis of polyoxometalate nanoparticles and their improved catalytic activity for the aerobic oxidation of sulfides[J]. J. Am. Chem. Soc., 2006,128(15):4968-4969. doi: 10.1021/ja060696h
Li H L, Sun H, Qi W, Xu M, Wu L X. Onionlike hybrid assemblies based on surfactant-encapsulated polyoxometalates[J]. Angew. Chem. Int. Ed., 2007,46(8):1300-1303. doi: 10.1002/anie.200603934
Liu T B, Diemann E, Li H L, Dress A W M, Muller A. Self-assembly in aqueous solution of wheel-shaped Mo154 oxide clusters into vesicles[J]. Nature, 2003,426:59-62. doi: 10.1038/nature02036
Kastner K, Kibler A J, Erno K, Fernandes J A, Sans V, Newton G N. Redox-active organic-inorganic hybrid polyoxometalate micelles[J]. J. Mater. Chem. A, 2017,5:11577-11581. doi: 10.1039/C7TA00408G
Xia Z Q, Lin C G, Yang Y, Wang Y K, Wu Z P, Song Y F, Russell T P, Shi S W. Polyoxometalate-surfactant assemblies: Responsiveness to orthogonal stimuli[J]. Angew. Chem. Int. Ed., 2022,61(25)e202203741. doi: 10.1002/anie.202203741
Medeiros M, Marcos X, Medina A A V, Casas S P, Fadrique J G. Micellization and adsorption modeling of single and mixed nonionic surfactants[J]. Colloid Surface A, 2018,556:81-92. doi: 10.1016/j.colsurfa.2018.08.005
Falaise C, Khlifi S, Bauduin P, Schmid P, Degrouard J, Leforestier A, Shepard W, Marrot J, Haouas M, Landy D, Draznieks C M, Cadot E. Cooperative self-assembly process involving giant toroidal polyoxometalate as a membrane building block in nanoscale vesicles[J]. J. Am. Chem. Soc., 2024,146(2):1501-1511. doi: 10.1021/jacs.3c11004
Williams D S, Patil A J, Mann S. Spontaneous structuration in coacervate‐based protocells by polyoxometalate‐mediated membrane assembly[J]. Small, 2014,10(9):1830-1840. doi: 10.1002/smll.201303654
Gobbo P, Tian L F, Kumar B V V S P, Turvey S, Cattelan M, Patil A J, Carraro M, Bonchio M, Mann S. Catalytic processing in ruthenium-based polyoxometalate coacervate protocells[J]. Nat. Commun., 2020,1141. doi: 10.1038/s41467-019-13759-1type=unixref&xml=|Artif. Cell. Nanomed. Biotechnol.||48|1|1214|2020|||
Kornberg A, Rao N N, Ault R D. Inorganic polyphosphate: A molecule of many functions[J]. Annu. Rev. Biochem., 1999,68:89-125. doi: 10.1146/annurev.biochem.68.1.89
Rao N N, Garcia G M R, Kornberg A. Inorganic polyphosphate: essential for growth and survival[J]. Annu. Rev. Biochem., 2009,78:605-647. doi: 10.1146/annurev.biochem.77.083007.093039
Gray M J, Wholey W Y, Wagner N O, Cremers C M, Schickert A M, Hock N T, Krieger A G, Smith E M, Bender R A, Bardwell J C A, Jakob U. Polyphosphate is a primordial chaperone[J]. Mol. Cell, 2014,53:689-699. doi: 10.1016/j.molcel.2014.01.012
Nguyen T Q, Dziuba N, Lindahl P A. Isolated saccharomyces cerevisiae vacuoles contain low-molecular-mass transition-metal polyphosphate complexes[J]. Metallomics, 2019,11:1298-1309. doi: 10.1039/c9mt00104b
Dai S, Xie Z M, Wang B Q, Ye R, Ou X W, Wang C, Yu N, Huang C, Zhao J, Cai C H, Zhang F R, Buratto D, Khan T, Qiao Y, Hua Y J, Zhou R H, Tian B. An inorganic mineral-based protocell with prebiotic radiation fitness[J]. Nat. Commun., 2023,147699. doi: 10.1038/s41467-023-43272-5
Shi M S, Yang R W, Li Q, Lv K, Miron R J, Sun J, Li M, Zhang Y F. Inorganic self-assembled bioactive artificial proto-osteocells inducing bone regeneration[J]. ACS Appl. Mater. Interfaces, 2018,10(13):10718-10728. doi: 10.1021/acsami.8b00385
Chen Z W, Silveira G D Q, Ma X D, Xie Y S, Wu Y A, Barry E, Rajh T, Fry H C, Laible P D, Rozhkova E A. Light-gated synthetic protocells for plasmon-enhanced chemiosmotic gradient generation and ATP synthesis[J]. Angew. Chem. Int. Ed., 2019,58:4896-4900. doi: 10.1002/anie.201813963
Gao N, Xu C, Yin Z P, Li M, Mann S. Triggerable protocell capture in nanoparticle-caged coacervate microdroplets[J]. J. Am. Chem. Soc., 2022,144(9):3855-3862. doi: 10.1021/jacs.1c11414
Guindani C, Silva L C D, Cao S P, Ivanov T, Landfester K. Synthetic cells: from simple bio-inspired modules to sophisticated integrated systems[J]. Angew. Chem. Int. Ed., 2022,134e202110855. doi: 10.1002/ange.202110855
Wang T H, Fei J B, Dong Z Z, Yu F C, Li J B. Nanoarchitectonics with a membrane-embedded electron shuttle mimics the bioenergy anabolism of mitochondria[J]. Angew. Chem. Int. Ed., 2024,63e202319116. doi: 10.1002/anie.202319116
Zhang M R, Zhang Y, Mu W, Dong M D, Han X J. In situ synthesis of lipid analogues leading to artificial cell growth and division[J]. ChemSystemsChem, 2022,4(4)e202200007. doi: 10.1002/syst.202200007
Li M, Huang X, Mann S. Spontaneous growth and division in self-reproducing inorganic colloidosomes[J]. Small, 2014,10:3291-3298. doi: 10.1002/smll.201400639
Taylor H, Gao N, Mann S. Chemical communication and protocell-matrix dynamics in segregated colloidosome micro‑colonies[J]. Angew. Chem. Int. Ed., 2023,62e202300932. doi: 10.1002/anie.202300932
Buller R, Lutz S, Kazlauskas R J, Snajdrova R, Moore J C, Bornscheuer U T. From nature to industry: Harnessing enzymes for biocatalysis[J]. Science, 2023,3826673.
Schoonen L, Jan C M. Compartmentalization approaches in soft matter science: From nanoreactor development to organelle mimics[J]. Adv. Mater., 2016,28:1109-1128. doi: 10.1002/adma.201502389
Deng N N, Yelleswarapu M, Huck W T S. Monodisperse uni- and multicompartment liposomes[J]. J. Am. Chem. Soc., 2016,138(24):7584-7591. doi: 10.1021/jacs.6b02107
Drobot B, Iglesias A J M, Vay K L, Mayr V, Kar M, Kreysing M, Mutschler H, Tang T Y D. Compartmentalized RNA catalysis in membrane-free coacervate protocells[J]. Nat. Commun., 2018,93643. doi: 10.1038/s41467-018-06072-w
Sun Z Y, Glebe U, Charan H, Boker A, Wu C Z. Enzyme-polymer conjugates as robust pickering interfacial biocatalysts for efficient biotransformations and one-pot cascade reactions[J]. Angew. Chem. Int. Ed., 2018,57:13810-13814. doi: 10.1002/anie.201806049
Tian D P, Hao R P, Zhang X M, Shi H, Wang Y W, Liang L F, Liu H C, Yang H Q. Multi-compartmental MOF microreactors derived from pickering double emulsions for chemo-enzymatic cascade catalysis[J]. Nat. Commun., 2023,143226. doi: 10.1038/s41467-023-38949-w
Britton J, Majumdar S, Weiss G A. Continuous flow biocatalysis[J]. Chem. Soc. Rev., 2018,475891. doi: 10.1039/C7CS00906B
Hartley C J, Williams C C, Scoble J A, Churches Q I, North A, French N G, Nebl T, Coia G, Warden A C, Simpson G, Frazer A R, Jensen C N, Turner N J, Scott C. Engineered enzymes that retain and regenerate their cofactors enable continuous-flow biocatalysis[J]. Nat. Catal., 2019,2:1006-1015. doi: 10.1038/s41929-019-0353-0
Es I, Vieira J D G, Amaral A C. Principles, techniques, and applications of biocatalyst immobilization for industrial application[J]. Appl. Microbiol. Biotechnol., 2015,992065. doi: 10.1007/s00253-015-6390-y
Zhang M, Ettelaie R, Li T, Yang J Q, Dong L L, Xue N, Binks B P, Cheng F Q, Yang H Q. Pickering emulsion droplets and solid microspheres acting synergistically for continuous-flow cascade reactions[J]. Nat. Catal., 2024,7:295-306. doi: 10.1038/s41929-024-01110-x
Ma H, Liu X Y, Nobbs A H, Mishra A, Patil A J, Mann S. Protocell flow reactors for enzyme and whole-cell mediated biocatalysis[J]. Adv. Mater., 20242404607.
Zongfei YANG , Xiaosen ZHAO , Jing LI , Wenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306
Shuyu Liu , Xiaomin Sun , Bohan Song , Gaofeng Zeng , Bingbing Du , Chongshen Guo , Cong Wang , Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113
Siyu HOU , Weiyao LI , Jiadong LIU , Fei WANG , Wensi LIU , Jing YANG , Ying ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
Tingting XU , Wenjing ZHANG , Yongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229
Guimin ZHANG , Wenjuan MA , Wenqiang DING , Zhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293
Siyi ZHONG , Xiaowen LIN , Jiaxin LIU , Ruyi WANG , Tao LIANG , Zhengfeng DENG , Ao ZHONG , Cuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
Yongjie ZHANG , Bintong HUANG , Yueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247
Jinghan ZHANG , Guanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249
Di WU , Ruimeng SHI , Zhaoyang WANG , Yuehua SHI , Fan YANG , Leyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135
Yurong Tang , Yunren Shi , Yi Xu , Bo Qin , Yanqin Xu , Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087
Meiqing Yang , Lu Wang , Haozi Lu , Yaocheng Yang , Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046
Yang WANG , Xiaoqin ZHENG , Yang LIU , Kai ZHANG , Jiahui KOU , Linbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
Yuanpei ZHANG , Jiahong WANG , Jinming HUANG , Zhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077
Xiaxue Chen , Yuxuan Yang , Ruolin Yang , Yizhu Wang , Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019
Yanting HUANG , Hua XIANG , Mei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196
Inset: (ⅰ) design and operation schematic of multi-chamber protocell model, with organic clay/DNA membrane (blue circle) containing thousands of Ru4PCVs (brown curves) that produce oxygen under external H2O2 mediation; (ⅱ) dark-field microscopy image of organic clay/DNA protocells encapsulating Ru4PCV.
The capture of guest protocells by host protocells can be determined by customizing the surface properties of the guest protocells.