Citation: Zhaoxin LI, Ruibo WEI, Min ZHANG, Zefeng WANG, Jing ZHENG, Jianbo LIU. Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235 shu

Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications

  • Corresponding author: Jianbo LIU, liujianbo@hnu.edu.cn
  • Received Date: 23 June 2024
    Revised Date: 20 October 2024

Figures(10)

  • The bottom-up construction of artificial cell compartments, known as synthetic protocells, that can mimic the fundamental characteristics of living cells, is advancing at a rapid pace. This development not only bridges the gap between non-living and living entities but also provides crucial insights into the origin of life. Among them, inorganic protocells exhibit higher chemical and mechanical stability, biocompatibility, and flexibility in membrane design. Therefore, they hold great promise for research, particularly in the fields of cell biomimetics and biocatalysis. The article first introduces the basic characteristics of inorganic protocells, including compartmentalization, membrane selectivity, and cascade metabolic networks. Then, it provides an overview of the construction methods of inorganic protocells, with a focus on three main types of compartments: inorganic colloidosomes, magnetic nanoparticles, and polyoxometalates. Finally, it discusses their latest applications in cell biomimetics and biocatalysis, along with an analysis of current challenges and future development prospects.
  • 加载中
    1. [1]

      Szostak J W, Bartel D P, Luisi L P. Synthesizing life[J]. Nature, 2001,409:387-390. doi: 10.1038/35053176

    2. [2]

      Mann S. Systems of creation: The emergence of life from nonliving matter[J]. Acc. Chem. Res., 2012,45(12):2131-2141. doi: 10.1021/ar200281t

    3. [3]

      Gozen I. A hypothesis for protocell division on the early earth[J]. ACS Nano, 2019,13:10869-10871. doi: 10.1021/acsnano.9b06584

    4. [4]

      Teo B M, Rigau L H, Lynge M E, Stadler B. Liposome-containing polymer films and colloidal assemblies towards biomedical applications[J]. Nanoscale, 2014,6:6426-6433. doi: 10.1039/c4nr00459kr200281t

    5. [5]

      Ryu K J, Lee J Y, Park C, Cho D, Kim S J. Isolation of small extracellular vesicles from human serum using a combination of ultracentrifugation with polymer-based precipitation[J]. Ann. Lab. Med., 2020,40(3):253-258. doi: 10.3343/alm.2020.40.3.253

    6. [6]

      Lange N D, Leermakers F A M, Kleijn J M. Self-limiting aggregation of phospholipid vesicles[J]. Soft Matter, 2020,16(9):2379-2389. doi: 10.1039/C9SM01692A

    7. [7]

      Wang W, Li B Y, Zhang M J, Su Y Y, Pan D W, Liu Z, Ju X J, Xie R, Faraj Y, Chu L Y. Microfluidic emulsification techniques for controllable emulsion production and functional microparticle synthesis[J]. Chem. Eng. J., 2023,452(1)139277.

    8. [8]

      Vian A, Amstad E. Mechano-responsive microcapsules with uniform thin shells[J]. Soft Matter, 2019,15(6):1290-1296. doi: 10.1039/C8SM02047G

    9. [9]

      Ballard N, Law A D, Bon F. Colloidal particles at fluid interfaces: Behaviour of isolated particles[J]. Soft Matter, 2019,15(6):1186-1199. doi: 10.1039/C8SM02048E

    10. [10]

      Kumar R K, Li M, Olof S N, Patil A J, Mann S. Artificial cytoskeletal structures within enzymatically active bio‑inorganic protocells[J]. Small, 2013,9(3):357-362. doi: 10.1002/smll.201201539

    11. [11]

      He J, Liu Y J, Babu T, Wei Z J, Nie Z H. Self-assembly of inorganic nanoparticle vesicles and tubules driven by tethered linear block copolymers[J]. J. Am. Chem. Soc., 2012,134:11342-11345. doi: 10.1021/ja3032295

    12. [12]

      Lai Q S, Li X X, Zheng S T. All-inorganic POM cages and their assembly: A review[J]. Coord. Chem. Rev., 2023,482215077. doi: 10.1016/j.ccr.2023.215077

    13. [13]

      Gao Y Y, Szymanowski J E S, Sun X Y, Burns P C, Liu T B. Thermal responsive ion selectivity of uranyl peroxide nanocages: An inorganic mimic of K+ ion channels[J]. Angew. Chem. Int. Ed., 2016,128:7001-7005. doi: 10.1002/ange.201601852

    14. [14]

      Kamiya K, Kawano R, Osaki T, Akiyoshi K, Takeuchi S. Cell-sized asymmetric lipid vesicles facilitate the investigation of asymmetric membranes[J]. Nat. Chem., 2016,8:881-889. doi: 10.1038/nchem.2537

    15. [15]

      Koga S, Williams D S, Perriman A W, Mann S. Peptide-nucleotide microdroplets as a step towards a membrane-free protocell model[J]. Nat. Chem., 2011,3(9):720-724. doi: 10.1038/nchem.1110

    16. [16]

      Liu X L, Formanek P, Voit B, Appelhans D. Functional cellular mimics for the spatiotemporal control of multiple enzymatic cascade reactions[J]. Angew. Chem. Int. Ed., 2017,56:16233-16238.

    17. [17]

      Dinsmore A D, Hsu M F, Nikolaides M G, Marquez M, Bausch A R, Weitz D A. Colloidosomes: Selectively permeable capsules composed of colloidal particles[J]. Science, 2002,298:1006-1009. doi: 10.1126/science.1074868

    18. [18]

      Wang H L, Zhu X M, Tsarkova L, Pich A, Moller M. All-silica colloidosomes with a particle-bilayer shell[J]. ACS Nano, 2011,5(5):3937-3942. doi: 10.1021/nn200436s

    19. [19]

      Huang X, Li M, Green D C, Williams D S, Patil A J, Mann S. Interfacial assembly of protein-polymer nano-conjugates into stimulus- responsive biomimetic protocells[J]. Nat. Commun., 2013,4(1)2239. doi: 10.1038/ncomms3239

    20. [20]

      Wang X J, Du H, Wang Z, Mu W, Han X J. Versatile phospholipid assemblies for functional synthetic cells and artificial tissues[J]. Adv. Mater., 2021,33(6)2002635. doi: 10.1002/adma.202002635

    21. [21]

      Reardon S. How synthetic biologists are building better biofactories[J]. Nature, 2024,628:224-226. doi: 10.1038/d41586-024-00907-x

    22. [22]

      Rycroft M J. Earth: Evolution of a habitable world[J]. J. Atmos. Sol. —Terr. Phy., 2000,62(2):147-148. doi: 10.1016/S1364-6826(99)00112-1

    23. [23]

      Bernal J D. The physical basis of life[J]. Proc. Phys. Soc. A, 1949,62:537-558. doi: 10.1088/0370-1298/62/9/301

    24. [24]

      Blochl E, Keller M, Wachtershauser G, Stetter K O. Reactions depending on iron sulfide and linking geochemistry with biochemistry[J]. Proc. Natl. Acad. Sci. U. S. A., 1992,89(17):8117-8120. doi: 10.1073/pnas.89.17.8117

    25. [25]

      Russell M J, Hall A J. The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front[J]. J. Geol. Soc. London, 1997,154:377-402. doi: 10.1144/gsjgs.154.3.0377

    26. [26]

      Alpermann T, Rudel K, Ruger R, Steiniger F, Nietzsche S, Filiz V, Forster S, Fahr A, Weigand W. Polymersomes containing iron sulfide (FeS) as primordial cell model: For the investigation of energy providing redox reactions[J]. Orig. Life Evol. Biosph., 2011,41:103-119. doi: 10.1007/s11084-010-9223-0

    27. [27]

      Morasch M, Liu J, Dirscherl C F, Ianeselli A, Kuhnlein A, Vay K L, Schwintek P, Islam S, Corpinot M K, Scheu B, Dingwell D B, Schwille P, Mutschler H, Powner M W, Mast C B, Braun D. Heated gas bubbles enrich, crystallize, dry, phosphorylate and encapsulate prebiotic molecules[J]. Nat. Chem., 2019,11779. doi: 10.1038/s41557-019-0299-5

    28. [28]

      Hansma H G. Possible origin of life between mica sheets[J]. J. Theor. Biol., 2010,266(1):175-188. doi: 10.1016/j.jtbi.2010.06.016

    29. [29]

      Hanczyc M M, Mansy S S, Szostak J W. Mineral surface directed membrane assembly[J]. Orig. Life Evol. Biosph., 2006,37:67-82.

    30. [30]

      Egel R. Origins and emergent evolution of life: the colloid microsphere hypothesis revisited[J]. Orig. Life Evol. Biosph., 2014,44:87-110. doi: 10.1007/s11084-014-9363-8

    31. [31]

      Lane N, Martin W F. The origin of membrane bioenergetics[J]. Cell, 2012,151:1406-1416. doi: 10.1016/j.cell.2012.11.050

    32. [32]

      Wachtershauser G. Groundworks for an evolutionary biochemistry: The iron-sulfur world[J]. Prog. Biophys. Mol. Biol., 1992,58:85-201. doi: 10.1016/0079-6107(92)90022-X

    33. [33]

      Cody G D, Boctor N Z, Filley T R, Hazen R M, Scott J H, Sharma A, Yoder H S J. Primordial carbonylated iron-sulfur compounds and synthesis of pyruvate[J]. Science, 2000,289:1337-1340. doi: 10.1126/science.289.5483.1337

    34. [34]

      Keller M, Blochl E, Wachtershauser G, Stetter K O. Formation of amide bonds without a condensation agent and implications for origin of life[J]. Nature, 1994,368:836-838. doi: 10.1038/368836a0

    35. [35]

      Kuchler A, Yoshimoto M, Luginbuhl S, Mavelli F, Walde P. Enzymatic reactions in confined environments[J]. Nat. Nanotechnol., 2016,11(5):409-420. doi: 10.1038/nnano.2016.54

    36. [36]

      Buddingh B C, Jan C M. Artificial cells: Synthetic compartments with life-like functionality and adaptivity[J]. Acc. Chem. Res., 2017,50(4):769-777. doi: 10.1021/acs.accounts.6b00512

    37. [37]

      Xu Z, Hueckel T, Irvine W T M, Sacanna S. Transmembrane transport in inorganic colloidal cell-mimics[J]. Nature, 2021,597:220-224. doi: 10.1038/s41586-021-03774-y

    38. [38]

      Fernandez C D J, Vazquez A. A physical model of cell metabolism[J]. Sci. Rep., 2018,8(1)8349. doi: 10.1038/s41598-018-26724-7

    39. [39]

      Noireaux V, Libchaber A. A vesicle bioreactor as a step toward an artificial cell assembly[J]. Proc. Natl. Acad. Sci. U. S. A., 2004,101(51):17669-17674. doi: 10.1073/pnas.0408236101

    40. [40]

      Liu J, Guo Z Y, Liang K. Biocatalytic metal‐organic framework‐based artificial cells[J]. Adv. Funct. Mater., 2019,29(45)1905321. doi: 10.1002/adfm.201905321

    41. [41]

      Hunter S J, Cornel E J, Mykhaylyk O O, Armes S P. Effect of salt on the formation and stability of water-in-oil pickering nanoemulsions stabilized by diblock copolymer nanoparticles[J]. Langmuir, 2020,36(51):15523-15535. doi: 10.1021/acs.langmuir.0c02742

    42. [42]

      Thompson K L, Williams M, Armes S P. Colloidosomes: Synthesis, properties and applications[J]. J. Colloid Interface Sci., 2015,447:217-228. doi: 10.1016/j.jcis.2014.11.058

    43. [43]

      Wu H, Du X L, Meng X H, Qiu D, Qiao Y. A three-tiered colloidosomal microreactor for continuous flow catalysis[J]. Nat. Commun., 2021,126113. doi: 10.1038/s41467-021-26381-x

    44. [44]

      Li M, Harbron R L, Weaver J V M, Binks B P, Mann S. Electrostatically gated membrane permeability in inorganic protocells[J]. Nat. Chem., 2013,5:529-536. doi: 10.1038/nchem.1644

    45. [45]

      Haufova P, Dohnal J, Hanus J, Stepanek F. Towards the inkjet fabrication of artificial cells[J]. Colloid Surface A, 2012,410:52-58. doi: 10.1016/j.colsurfa.2012.06.014

    46. [46]

      Subramaniam A B, Wan J, Gopinathc A, Stone H A. Semipermeable vesicles composed of natural clay[J]. Soft Matter, 2011,7:2600-2612. doi: 10.1039/c0sm01354d

    47. [47]

      Sun S Y, Li M, Dong F Q, Wang S J, Tian L F, Mann S. Chemical signaling and functional activation in colloidosome-based protocells[J]. Small, 2016,12:1920-1927. doi: 10.1002/smll.201600243

    48. [48]

      Kumar B V V S P, Patil A J, Mann S. Enzyme-powered motility in buoyant organoclay/DNA protocells[J]. Nat. Chem., 2018,10:1154-1163. doi: 10.1038/s41557-018-0119-3

    49. [49]

      Tan C, Dima C, Huang M, Assadpour E, Wang J, Sun B G, Kharazmi M S, Jafari S M. Advanced CaCO3-derived delivery systems for bioactive compounds[J]. Adv. Colloid Interface, 2022,309102791. doi: 10.1016/j.cis.2022.102791

    50. [50]

      Wang C Y, Liu H X, Gao Q X, Liu X X, Tong Z. Facile fabrication of hybrid colloidosomes with alginate gel cores and shells of porous CaCO3 microparticles[J]. ChemPhysChem, 2007,8:1157-1160. doi: 10.1002/cphc.200700147-3

    51. [51]

      Pang M L, Cairns A J, Liu Y L, Belmabkhout Y, Zeng H C, Eddaoudi M. Synthesis and integration of Fe-soc-MOF cubes into colloidosomes via a single-step emulsion-based approach[J]. J. Am. Chem. Soc., 2013,135:10234-10237. doi: 10.1021/ja403994u

    52. [52]

      Huang H, Li J, Yuan M G, Yang H W, Zhao Y, Ying Y L, Wang S. Large‑scale self‑assembly of MOFs colloidosomes for bubble‑ propelled micromotors and stirring‐free environmental remediation[J]. Angew. Chem. Int. Ed., 2022,134(46)e202211163. doi: 10.1002/ange.202211163

    53. [53]

      Fonseca J, Meng L X, Imaz I, Maspoch D. Self-assembly of colloidal metal-organic framework (MOF) particles[J]. Chem. Soc. Rev., 2023,52(7):2528-2543. doi: 10.1039/D2CS00858K

    54. [54]

      Demina P A, Bukreeva T V. Pickering emulsion stabilized by commercial titanium dioxide nanoparticles in the form of rutile and anatase[J]. Nanotechnol. Russ., 2018,13:425-429. doi: 10.1134/S1995078018040043

    55. [55]

      Quang G C P, Wee E H Z, Yang F L, Lee H K, Phang I Y, Feng X T, Puebla R A A, Ling X Y. Online flowing colloidosomes for sequential multi-analyte high-throughput SERS analysis[J]. Angew. Chem. Int. Ed., 2017,56:5565-5569. doi: 10.1002/anie.201702374

    56. [56]

      Zhou S J, Narutaki A S, Tsuboike S, Wang J Z, Shimojima A, Okubo T. Nanoparticle vesicles with controllable surface topographies through block copolymer-mediated self-assembly of silica nanospheres[J]. Langmuir, 2015,31(48):13214-13220. doi: 10.1021/acs.langmuir.5b03424

    57. [57]

      Li M, Green D C, Anderson J L R, Binks B P, Mann S. In vitro gene expression and enzyme catalysis in bio-inorganic protocells[J]. Chem. Sci., 2011,2:1739-1745. doi: 10.1039/c1sc00183c

    58. [58]

      Xu Q, Zhang Z P, Lui P P Y, Lu L, Li X W, Zhang X. Preparation and biomedical applications of artificial cells[J]. Mater. Today Bio, 2023,23100877. doi: 10.1016/j.mtbio.2023.100877

    59. [59]

      Li S, Moosa B A, Croissant J G, Khashab P N M. Electrostatic assembly/disassembly of nanoscaled colloidosomes for light-triggered cargo release[J]. Angew. Chem. Int. Ed., 2015,54(23):6804-6808. doi: 10.1002/anie.201501615

    60. [60]

      Bollhorst T, Grieb T, Rosenauer A, Fuller G, Maas M, Rezwan K. Synthesis route for the self-assembly of submicrometer sized colloidosomes with tailorable nanopores[J]. Chem. Mater., 2013,25:3464-3471. doi: 10.1021/cm401610a

    61. [61]

      Zhou S B, Fan J, Datta S S, Guo M, Guo X, Weitz D A. Thermally switched release from nanoparticle colloidosomes[J]. Adv. Funct. Mater., 2013,23:5925-5929. doi: 10.1002/adfm.201301030

    62. [62]

      Yin W, Wang Y Y, Liu H Y, Sun M M, Zhang Y L, Yuan H, Guo T, Meng T. SCbots: Stomatocyte-like colloidosomes as versatile microrobots fabricated by one-step self-assembly[J]. Chem. Eng. J., 2024,490151952. doi: 10.1016/j.cej.2024.151952

    63. [63]

      Akkarachaneeyakorn K, Li M, Davis S A, Mann S. Secretion and reversible assembly of extracellular-like matrix by enzyme-active colloidosome-based protocells[J]. Langmuir, 2016,32(12):2912-2919. doi: 10.1021/acs.langmuir.6b00553952

    64. [64]

      Hann S D, Stebe K J, Lee D. AWE-somes: All water emulsion bodies with permeable shells and selective compartments[J]. ACS Appl. Mater. Interfaces, 2017,9(29):25023-25028. doi: 10.1021/acsami.7b05800

    65. [65]

      Liu Z N, Wang B D, Jin S H, Wang Z D, Wang L, Liang S. Bioinspired dual-enzyme colloidosome reactors for high-performance biphasic catalysis[J]. ACS Appl. Mater. Interfaces, 2018,10(48):41504-41511. doi: 10.1021/acsami.8b14321

    66. [66]

      Hao R, Xing R J, Xu Z C, Hou Y L, Gao S, Sun S H. Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles[J]. Adv. Mater., 2010,22(25):2729-2742. doi: 10.1002/adma.201000260

    67. [67]

      Wu L H, Garcia A M, Li Q, Sun S H. Organic phase syntheses of magnetic nanoparticles and their applications[J]. Chem. Rev., 2016,116(18):10473-10512. doi: 10.1021/acs.chemrev.5b00687

    68. [68]

      Zhu K, Ju Y M, Xu J J, Yang Z Y, Gao S, Hou Y L. Magnetic nanomaterials: Chemical design, synthesis, and potential applications[J]. Acc. Chem. Res., 2018,51(2):404-413. doi: 10.1021/acs.accounts.7b00407

    69. [69]

      Qu Y N, Huang R L, Qi W, Qu Q, Su R X, He Z M. Structural insight into stabilization of pickering emulsions with Fe3O4@SiO2 nanoparticles for enzyme catalysis in organic media[J]. Part. Part. Syst. Char., 2017,34(7)1700117. doi: 10.1002/ppsc.201700117

    70. [70]

      Peng H B, Tang J, Zheng R, Guo G N, Dong A G, Wang Y J, Yang W L. Nuclear-targeted multifunctional magnetic nanoparticles for photothermal therapy[J]. Adv. Healthc. Mater., 2017,6(7)1601289. doi: 10.1002/adhm.201601289

    71. [71]

      Ren X Q, Zheng R, Fang X L, Wang X F, Zhang X Y, Yang W L, Sha X Y. Red blood cell membrane camouflaged magnetic nanoclusters for imaging-guided photothermal therapy[J]. Biomaterials, 2016,92:13-24. doi: 10.1016/j.biomaterials.2016.03.026

    72. [72]

      Hou S A, Bai L, Lu D R, Duan H W. Interfacial colloidal self-assembly for functional materials[J]. Acc. Chem. Res., 2023,56(7):740-751. doi: 10.1021/acs.accounts.2c00705

    73. [73]

      Duan H W, Wang D Y, Sobal N S, Giersig M, Kurth D G, Mohwald H. Magnetic colloidosomes derived from nanoparticle interfacial self-assembly[J]. Nano Lett., 2005,5(5):949-952. doi: 10.1021/nl0505391

    74. [74]

      Zhang L, Zhang F, Wang Y S, Sun Y L, Dong W F, Song J F, Huo Q S, Sun H B. Magnetic colloidosomes fabricated by Fe3O4-SiO2 hetero-nanorods[J]. Soft Matter, 2011,7:7375-7381. doi: 10.1039/c1sm05184a

    75. [75]

      Bollhorst T, Shahabi S, Worz K, Petters C, Dringen R, Maas M, Rezwan K. Bifunctional submicron colloidosomes coassembled from fluorescent and superparamagnetic nanoparticles[J]. Angew. Chem. Int. Ed., 2015,54(1):118-123. doi: 10.1002/anie.201408515

    76. [76]

      Ku K H, Li J, Yoshinaga K, Swager T M. Dynamically reconfigurable, multifunctional emulsions with controllable structure and movement[J]. Adv. Mater., 2019,311905569. doi: 10.1002/adma.201905569

    77. [77]

      Sharifabad M E, Mercer T, Sen T. Drug-loaded liposome-capped mesoporous core-shell magnetic nanoparticles for cellular toxicity study[J]. Nanomedicine, 2016,11(21):2753-2755.

    78. [78]

      Xuan M J, Shao J X, Zhao J, Li Q, Dai L R, Li J B. Magnetic mesoporous silica nanoparticles cloaked by red blood cell membranes: Applications in cancer therapy[J]. Angew. Chem. Int. Ed., 2018,57(21):6049-6053. doi: 10.1002/anie.201712996

    79. [79]

      Granath T, Sanchez A S, Shmeliov A, Nicolosi V, Fierro V, Celzard A, Mandel K. Hollow superparamagnetic microballoons from lifelike, self-directed pickering emulsions based on patchy nanoparticles[J]. ACS Nano, 2016,10(11):10347-10356. doi: 10.1021/acsnano.6b06063

    80. [80]

      Arco L R, Li M, Mann S. Phagocytosis-inspired behaviour in synthetic protocell communities of compartmentalized colloidal objects[J]. Nat. Mater., 2017,16:857-863. doi: 10.1038/nmat4916

    81. [81]

      Arco L R, Kumar B V V S P, Li M, Patil A J, Mann S. Modulation of higher-order behaviour in model protocell communities by artificial phagocytosis[J]. Angew. Chem. Int. Ed., 2019,58(19):6333-6337. doi: 10.1002/anie.201901469

    82. [82]

      Long D L, Tsunashima R, Cronin L. Polyoxometalates: building blocks for functional nanoscale systems[J]. Angew. Chem. Int. Ed., 2010,49(10):1736-1758. doi: 10.1002/anie.200902483

    83. [83]

      Naskar B, Diat O, Rataj V N, Bauduin P. Nanometer-size polyoxometalate anions adsorb strongly on neutral soft surfaces[J]. J. Phys. Chem. C, 2015,119(36):20985-20992. doi: 10.1021/acs.jpcc.5b06273

    84. [84]

      Barba B A, Salluce G, Seijo L I, Assaf K I, Hennig A, Montenegro J, Nau W M. Boron clusters as broadband membrane carriers[J]. Nature, 2022,603:637-642. doi: 10.1038/s41586-022-04413-w

    85. [85]

      Bijelic A, Aureliano M, Rompel A. Polyoxometalates as potential next-generation metallodrugs in the combat against cancer[J]. Angew. Chem. Int. Ed., 2019,58(10):2980-2999. doi: 10.1002/anie.201803868

    86. [86]

      Bijelic A, Rompel A. The use of polyoxometalates in protein crystallography-an attempt to widen a well-known bottleneck[J]. Coord. Chem. Rev., 2015,299:22-38. doi: 10.1016/j.ccr.2015.03.018

    87. [87]

      Rehder D. Structure and function of vanadium compounds in living organisms[J]. Biometals, 1992,5:3-12. doi: 10.1007/BF01079691

    88. [88]

      Milojevic T, Albu M, Blazevic A, Gumerova N, Konrad L, Cyran N. Nanoscale tungsten-microbial interface of the metal immobilizing thermoacidophilic archaeon metallosphaera sedula cultivated with tungsten polyoxometalate[J]. Front. Microbiol., 2019,101267. doi: 10.3389/fmicb.2019.01267

    89. [89]

      Muller A, Rehder D, Haupt E T K, Merca A, Bogge H, Schmidtmann M, Bruckner G H. Artificial cells: Temperature-dependent, reversible Li‑ion uptake/release equilibrium at metal oxide nanocontainer pores[J]. Angew. Chem. Int. Ed., 2004,43(34):4466-4470. doi: 10.1002/anie.200453762

    90. [90]

      Muller A, Das S K, Talismanov S, Roy S, Beckmann E, Bogge H, Schmidtmann M, Merca A, Berkle A, Allouche L, Zhou Y S, Zhang L J. Trapping cations in specific positions in tuneable "artificial cell" channels: New nanochemistry perspectives[J]. Angew. Chem. Int. Ed., 2003,42(41):5039-5044. doi: 10.1002/anie.200352358

    91. [91]

      Ma X Q, Xiao H P, Chen Y, Lai Q S, Li X X, Zheng S T. Polyoxometalate-based macrocycles and their assembly[J]. Coord. Chem. Rev., 2024,510215818. doi: 10.1016/j.ccr.2024.215818

    92. [92]

      Cooper G J T, Kitson P J, Winter R, Zagnoni M, Long D L, Cronin L. Modular redox-active inorganic chemical cells: iCHELLs[J]. Angew. Chem. Int. Ed., 2011,50(44):10373-10376. doi: 10.1002/anie.201105068

    93. [93]

      Nakanishi K, Cooper G J T, Points L J, Bloor L G, Ohba M, Cronin L. Development of a minimal photosystem for hydrogen production in inorganic chemical cells[J]. Angew. Chem. Int. Ed., 2018,57(40):13066-13070. doi: 10.1002/anie.201805584

    94. [94]

      Li K, Zhang S, Zhu K L, Cui L P, Yang L, Chen J J. Revealing the electrocatalytic self-assembly route from building blocks into giant Mo-blue clusters[J]. J. Am. Chem. Soc., 2023,145(45):24889-24896.

    95. [95]

      Huang C L, Chai Y, Jiang Y F, Forth J, Ashby P D, Arras M M L, Hong K, Smith G S, Yin P C, Russell T P. The interfacial assembly of polyoxometalate nanoparticle surfactants[J]. Nano Lett., 2018,18(4):2525-2529. doi: 10.1021/acs.nanolett.8b00208

    96. [96]

      Maayan G, Biro R P, Neumann R. Micelle directed synthesis of polyoxometalate nanoparticles and their improved catalytic activity for the aerobic oxidation of sulfides[J]. J. Am. Chem. Soc., 2006,128(15):4968-4969. doi: 10.1021/ja060696h

    97. [97]

      Li H L, Sun H, Qi W, Xu M, Wu L X. Onionlike hybrid assemblies based on surfactant-encapsulated polyoxometalates[J]. Angew. Chem. Int. Ed., 2007,46(8):1300-1303. doi: 10.1002/anie.200603934

    98. [98]

      Liu T B, Diemann E, Li H L, Dress A W M, Muller A. Self-assembly in aqueous solution of wheel-shaped Mo154 oxide clusters into vesicles[J]. Nature, 2003,426:59-62. doi: 10.1038/nature02036

    99. [99]

      Kastner K, Kibler A J, Erno K, Fernandes J A, Sans V, Newton G N. Redox-active organic-inorganic hybrid polyoxometalate micelles[J]. J. Mater. Chem. A, 2017,5:11577-11581. doi: 10.1039/C7TA00408G

    100. [100]

      Xia Z Q, Lin C G, Yang Y, Wang Y K, Wu Z P, Song Y F, Russell T P, Shi S W. Polyoxometalate-surfactant assemblies: Responsiveness to orthogonal stimuli[J]. Angew. Chem. Int. Ed., 2022,61(25)e202203741. doi: 10.1002/anie.202203741

    101. [101]

      Medeiros M, Marcos X, Medina A A V, Casas S P, Fadrique J G. Micellization and adsorption modeling of single and mixed nonionic surfactants[J]. Colloid Surface A, 2018,556:81-92. doi: 10.1016/j.colsurfa.2018.08.005

    102. [102]

      Falaise C, Khlifi S, Bauduin P, Schmid P, Degrouard J, Leforestier A, Shepard W, Marrot J, Haouas M, Landy D, Draznieks C M, Cadot E. Cooperative self-assembly process involving giant toroidal polyoxometalate as a membrane building block in nanoscale vesicles[J]. J. Am. Chem. Soc., 2024,146(2):1501-1511. doi: 10.1021/jacs.3c11004

    103. [103]

      Williams D S, Patil A J, Mann S. Spontaneous structuration in coacervate‐based protocells by polyoxometalate‐mediated membrane assembly[J]. Small, 2014,10(9):1830-1840. doi: 10.1002/smll.201303654

    104. [104]

      Gobbo P, Tian L F, Kumar B V V S P, Turvey S, Cattelan M, Patil A J, Carraro M, Bonchio M, Mann S. Catalytic processing in ruthenium-based polyoxometalate coacervate protocells[J]. Nat. Commun., 2020,1141. doi: 10.1038/s41467-019-13759-1type=unixref&xml=|Artif. Cell. Nanomed. Biotechnol.||48|1|1214|2020|||

    105. [105]

      Kornberg A, Rao N N, Ault R D. Inorganic polyphosphate: A molecule of many functions[J]. Annu. Rev. Biochem., 1999,68:89-125. doi: 10.1146/annurev.biochem.68.1.89

    106. [106]

      Rao N N, Garcia G M R, Kornberg A. Inorganic polyphosphate: essential for growth and survival[J]. Annu. Rev. Biochem., 2009,78:605-647. doi: 10.1146/annurev.biochem.77.083007.093039

    107. [107]

      Gray M J, Wholey W Y, Wagner N O, Cremers C M, Schickert A M, Hock N T, Krieger A G, Smith E M, Bender R A, Bardwell J C A, Jakob U. Polyphosphate is a primordial chaperone[J]. Mol. Cell, 2014,53:689-699. doi: 10.1016/j.molcel.2014.01.012

    108. [108]

      Nguyen T Q, Dziuba N, Lindahl P A. Isolated saccharomyces cerevisiae vacuoles contain low-molecular-mass transition-metal polyphosphate complexes[J]. Metallomics, 2019,11:1298-1309. doi: 10.1039/c9mt00104b

    109. [109]

      Dai S, Xie Z M, Wang B Q, Ye R, Ou X W, Wang C, Yu N, Huang C, Zhao J, Cai C H, Zhang F R, Buratto D, Khan T, Qiao Y, Hua Y J, Zhou R H, Tian B. An inorganic mineral-based protocell with prebiotic radiation fitness[J]. Nat. Commun., 2023,147699. doi: 10.1038/s41467-023-43272-5

    110. [110]

      Shi M S, Yang R W, Li Q, Lv K, Miron R J, Sun J, Li M, Zhang Y F. Inorganic self-assembled bioactive artificial proto-osteocells inducing bone regeneration[J]. ACS Appl. Mater. Interfaces, 2018,10(13):10718-10728. doi: 10.1021/acsami.8b00385

    111. [111]

      Chen Z W, Silveira G D Q, Ma X D, Xie Y S, Wu Y A, Barry E, Rajh T, Fry H C, Laible P D, Rozhkova E A. Light-gated synthetic protocells for plasmon-enhanced chemiosmotic gradient generation and ATP synthesis[J]. Angew. Chem. Int. Ed., 2019,58:4896-4900. doi: 10.1002/anie.201813963

    112. [112]

      Gao N, Xu C, Yin Z P, Li M, Mann S. Triggerable protocell capture in nanoparticle-caged coacervate microdroplets[J]. J. Am. Chem. Soc., 2022,144(9):3855-3862. doi: 10.1021/jacs.1c11414

    113. [113]

      Guindani C, Silva L C D, Cao S P, Ivanov T, Landfester K. Synthetic cells: from simple bio-inspired modules to sophisticated integrated systems[J]. Angew. Chem. Int. Ed., 2022,134e202110855. doi: 10.1002/ange.202110855

    114. [114]

      Wang T H, Fei J B, Dong Z Z, Yu F C, Li J B. Nanoarchitectonics with a membrane-embedded electron shuttle mimics the bioenergy anabolism of mitochondria[J]. Angew. Chem. Int. Ed., 2024,63e202319116. doi: 10.1002/anie.202319116

    115. [115]

      Zhang M R, Zhang Y, Mu W, Dong M D, Han X J. In situ synthesis of lipid analogues leading to artificial cell growth and division[J]. ChemSystemsChem, 2022,4(4)e202200007. doi: 10.1002/syst.202200007

    116. [116]

      Li M, Huang X, Mann S. Spontaneous growth and division in self-reproducing inorganic colloidosomes[J]. Small, 2014,10:3291-3298. doi: 10.1002/smll.201400639

    117. [117]

      Taylor H, Gao N, Mann S. Chemical communication and protocell-matrix dynamics in segregated colloidosome micro‑colonies[J]. Angew. Chem. Int. Ed., 2023,62e202300932. doi: 10.1002/anie.202300932

    118. [118]

      Buller R, Lutz S, Kazlauskas R J, Snajdrova R, Moore J C, Bornscheuer U T. From nature to industry: Harnessing enzymes for biocatalysis[J]. Science, 2023,3826673.

    119. [119]

      Schoonen L, Jan C M. Compartmentalization approaches in soft matter science: From nanoreactor development to organelle mimics[J]. Adv. Mater., 2016,28:1109-1128. doi: 10.1002/adma.201502389

    120. [120]

      Deng N N, Yelleswarapu M, Huck W T S. Monodisperse uni- and multicompartment liposomes[J]. J. Am. Chem. Soc., 2016,138(24):7584-7591. doi: 10.1021/jacs.6b02107

    121. [121]

      Drobot B, Iglesias A J M, Vay K L, Mayr V, Kar M, Kreysing M, Mutschler H, Tang T Y D. Compartmentalized RNA catalysis in membrane-free coacervate protocells[J]. Nat. Commun., 2018,93643. doi: 10.1038/s41467-018-06072-w

    122. [122]

      Sun Z Y, Glebe U, Charan H, Boker A, Wu C Z. Enzyme-polymer conjugates as robust pickering interfacial biocatalysts for efficient biotransformations and one-pot cascade reactions[J]. Angew. Chem. Int. Ed., 2018,57:13810-13814. doi: 10.1002/anie.201806049

    123. [123]

      Tian D P, Hao R P, Zhang X M, Shi H, Wang Y W, Liang L F, Liu H C, Yang H Q. Multi-compartmental MOF microreactors derived from pickering double emulsions for chemo-enzymatic cascade catalysis[J]. Nat. Commun., 2023,143226. doi: 10.1038/s41467-023-38949-w

    124. [124]

      Britton J, Majumdar S, Weiss G A. Continuous flow biocatalysis[J]. Chem. Soc. Rev., 2018,475891. doi: 10.1039/C7CS00906B

    125. [125]

      Hartley C J, Williams C C, Scoble J A, Churches Q I, North A, French N G, Nebl T, Coia G, Warden A C, Simpson G, Frazer A R, Jensen C N, Turner N J, Scott C. Engineered enzymes that retain and regenerate their cofactors enable continuous-flow biocatalysis[J]. Nat. Catal., 2019,2:1006-1015. doi: 10.1038/s41929-019-0353-0

    126. [126]

      Es I, Vieira J D G, Amaral A C. Principles, techniques, and applications of biocatalyst immobilization for industrial application[J]. Appl. Microbiol. Biotechnol., 2015,992065. doi: 10.1007/s00253-015-6390-y

    127. [127]

      Zhang M, Ettelaie R, Li T, Yang J Q, Dong L L, Xue N, Binks B P, Cheng F Q, Yang H Q. Pickering emulsion droplets and solid microspheres acting synergistically for continuous-flow cascade reactions[J]. Nat. Catal., 2024,7:295-306. doi: 10.1038/s41929-024-01110-x

    128. [128]

      Ma H, Liu X Y, Nobbs A H, Mishra A, Patil A J, Mann S. Protocell flow reactors for enzyme and whole-cell mediated biocatalysis[J]. Adv. Mater., 20242404607.

  • 加载中
    1. [1]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    2. [2]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    3. [3]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    4. [4]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    5. [5]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    6. [6]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    7. [7]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    8. [8]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    9. [9]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    10. [10]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    11. [11]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    12. [12]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    13. [13]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    14. [14]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    15. [15]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    16. [16]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    17. [17]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    18. [18]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    19. [19]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    20. [20]

      Yanting HUANGHua XIANGMei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196

Metrics
  • PDF Downloads(0)
  • Abstract views(56)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return