Citation: Tingting XU, Wenjing ZHANG, Yongbo SONG. Research advances of atomic precision coinage metal nanoclusters in tumor therapy[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229 shu

Research advances of atomic precision coinage metal nanoclusters in tumor therapy

  • Corresponding author: Yongbo SONG, ybsong860@ahmu.edu.cn
  • Received Date: 20 June 2024
    Revised Date: 24 October 2024

Figures(7)

  • Malignant tumors are one of the most serious threats to human health, and it has been a wildly discussed topic to establish efficient and accurate tumor treatment techniques. With the rapid development of nanomedicine technology, nanomaterial-mediated tumor treatment techniques have attracted more attention due to their low invasiveness, high specificity, and good therapeutic effects. As a new member of the nanomaterial family, atomically precise coinage metal nanoclusters show great potential in tumor treatment due to their excellent biocompatibility, surface modifiability, good optical properties, and efficient catalytic activity (generation of reactive oxygen species). This review mainly discusses the progress of research on atomically precise coinage metal nanoclusters in tumor treatment. Their antitumor mechanism is detailed in different therapies (radiation therapy, photothermal therapy, photodynamic therapy, chemodynamic therapy, drug delivery, and multimodal combination therapy). Moreover, the current challenges and prospects of metal nanoclusters in antitumors are summarized.
  • 加载中
    1. [1]

      Song G S, Chen Y Y, Liang C, Yi X, Liu J J, Sun X Q, Shen S D, Yang K, Liu Z. Catalase-loaded TaOx nanoshells as bio-nanoreactors combining high-Z element and enzyme delivery for enhancing radiotherapy[J]. Adv. Mater., 2016,28(33):7143-7148. doi: 10.1002/adma.201602111

    2. [2]

      Sung H, Ferlay J, Rebeccal L, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA-Cancer J. Clin., 2021,71(3):209-249. doi: 10.3322/caac.21660

    3. [3]

      Cabrita R, Lauss M, Sanna A, Donia M, Larsen M S, Mitra S, Johansson I, Phung B, Harbst K, Vallon-Christersson J, Schoiack A, Lövgren K, Warren S, Jirström K, Olsson H, Pietras K, Ingvar C, Isaksson K, Schadendorf D, Schmidt H, Bastholt L, Carneiro A, Wargo J A, Svane I M, Jönsson G. Tertiary lymphoid structures improve immunotherapy and survival in melanoma[J]. Nature, 2020,577:561-565. doi: 10.1038/s41586-019-1914-8

    4. [4]

      Holohan C, Schaeybroeck V S, Longley D B, Johnston P G. Cancer drug resistance: An evolving paradigm[J]. Nat. Rev. Cancer, 2013,13:714-726. doi: 10.1038/nrc3599

    5. [5]

      Yan H, Xu P C, Cong H L, Yu B, Shen Y Q. Research progress in construction of organic carrier drug delivery platform using tumor microenvironment[J]. Mater. Today Chem., 2024,37101997. doi: 10.1016/j.mtchem.2024.101997

    6. [6]

      Kurian A G, Singh R K, Patel K D, Lee J H, Kim H W. Multifunctional GelMA platforms with nanomaterials for advanced tissue therapeutics[J]. Bioact. Mater., 2022,8:267-295.

    7. [7]

      Cheng W, Nie J P, Gao N S, Liu G, Tao W, Xiao X J, Jiang L J, Liu Z G, Zeng X W, Mei L. A multifunctional nanoplatform against multidrug resistant cancer: Merging the best of targeted chemo/gene/photothermal therapy[J]. Adv. Funct. Mater., 2017,27(45)1704135. doi: 10.1002/adfm.201704135

    8. [8]

      Yang L T, Kim T H, Cho H Y, Luo J, Lee J M, Chueng S D, Hou Y, Yin P T, Han J, Kim J H, Chung B G, Choi J W, Lee K B. Hybrid graphene-gold nanoparticle-based nucleic acid conjugates for cancer-specific multimodal imaging and combined therapeutics[J]. Adv. Funct. Mater., 2021,31(5)2006918. doi: 10.1002/adfm.202006918

    9. [9]

      JIA S F, HAO X L, WEN Y Z, ZHANG Y. Synthesis, characterization, and antitumor activity of ruthenium􀃭 complexes based on schiff base ligand[J]. Chinese J. Inorg. Chem., 2022,38(10):1919-1926. doi: 10.11862/CJIC.2022.191

    10. [10]

      Wu P H, Opadele A E, Onodera Y, Nam J M. Targeting integrins in cancer nanomedicine: Applications in cancer diagnosis and therapy[J]. Cancers, 2019,11(11)1783. doi: 10.3390/cancers11111783

    11. [11]

      Cassano R, Cuconato M, Calviello G, Serini S, Trombino S. Recent advances in nanotechnology for the treatment of melanoma[J]. Molecules, 2021,26(4)785. doi: 10.3390/molecules26040785

    12. [12]

      Kang X, Li Y W, Zhu M Z, Jin R C. Atomically precise alloy nanoclusters: Syntheses, structures, and properties[J]. Chem. Soc. Rev., 2020,49(17):6443-6514. doi: 10.1039/C9CS00633H

    13. [13]

      Jin R C, Li G, Sharma S, Li Y W, Du X S. Toward active-site tailoring in heterogeneous catalysis by atomically precise metal nanoclusters with crystallographic structures[J]. Chem. Rev., 2021,121(2):567-648. doi: 10.1021/acs.chemrev.0c00495

    14. [14]

      Kawawaki T, Kataoka Y, Hirata M, Iwamatsu Y, Hossain S, Negishi Y. Toward the creation of high-performance heterogeneous catalysts by controlled ligand desorption from atomically precise metal nanoclusters[J]. Nanoscale Horiz., 2021,6(6):409-448. doi: 10.1039/D1NH00046B

    15. [15]

      ZHOU P, CAI X, MA Q X, LIU X. Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster[J]. Chinese J. Inorg. Chem., 2024,40(7):1254-1260.  

    16. [16]

      Zhang X D, Wu D, Shen X, Liu P X, Fan F Y, Fan S J. In vivo renal clearance, biodistribution, toxicity of gold nanoclusters[J]. Biomaterials, 2012,33(18):4628-4638. doi: 10.1016/j.biomaterials.2012.03.020

    17. [17]

      Du B J, Jiang X Y, Das A, Zhou Q H, Yu M X, Jin R C, Zheng J. Glomerular barrier behaves as an atomically precise bandpass filter in a sub-nanometre regime[J]. Nat. Nanotechnol., 2017,12:1096-1102. doi: 10.1038/nnano.2017.170

    18. [18]

      Zhang C Y, Zhang N, Niu W C, Li R H, Liu Y N, Mu Y L, Xu C, Yao Q Q, Gao X Y. Ultrasmall platinum nanoclusters: A potent chemotherapeutic drug for cancer-specific DNA damage with optimizing therapeutic efficacy while minimizing systemic toxicity[J]. Nano Today, 2024,55102195. doi: 10.1016/j.nantod.2024.102195

    19. [19]

      He Z H, Qu S H, Shang L. Perspectives on protein-nanoparticle interactions at the in vivo level[J]. Langnuir, 2024,40(15):7781-7790. doi: 10.1021/acs.langmuir.4c00181

    20. [20]

      SHANG L, WEN M Y. Recent progress in exploring the biological interactions of water-soluble fluorescent gold and silver nanoclusters[J]. Journal of Anhui University (Natural Science Edition), 2017,41(6):38-45.

    21. [21]

      Yang D, Yang G X, Gai S L, He F, An G H, Dai Y L, Lv R C, Yang P P. Au25 cluster functionalized metal-organic nanostructures for magnetically targeted photodynamic/photothermal therapy triggered by single wavelength 808 nm near-infrared light[J]. Nanoscale, 2015,7(46):19568-19578. doi: 10.1039/C5NR06192J

    22. [22]

      Pan X X, Yao Y D, Zhang M X, Yuan X, Yao Q F, Hu W P. Enzyme-mimic catalytic activities and biomedical applications of noble metal nanoclusters[J]. Nanoscale, 2024,16(17):8196-8215. doi: 10.1039/D4NR00282B

    23. [23]

      Yang X, Gao L, Guo Q, Li Y J, Ma Y, Yang J, Gong C Y, Yi C. Nanomaterials for radiotherapeutics-based multimodal synergistic cancer therapy[J]. Nano Res., 2020,13(10):2579-2594. doi: 10.1007/s12274-020-2722-z

    24. [24]

      Arnold K M, Flynn N J, Raben A, Romak L, Yu Y, Dicker A P, Mourtada F, Sims-Mourtada J. The impact of radiation on the tumor microenvironment: Effect of dose and fractionation schedules[J]. Cancer Growth and Metastasis, 2018,111179064418761639. doi: 10.1177/1179064418761639

    25. [25]

      Song G S, Cheng L, Chao Y, Yang K, Liu Z. Emerging nanotechnology and advanced materials for cancer radiation therapy[J]. Adv. Mater., 2017,29(32)1700996. doi: 10.1002/adma.201700996

    26. [26]

      Goswami N, Luo Z T, Yuan X, Leong D T, Xie J P. Engineering gold-based radiosensitizers for cancer radiotherapy[J]. Mater. Horiz., 2017,4(5):817-831. doi: 10.1039/C7MH00451F

    27. [27]

      Ma N N, Liu P D, He N Y, Gu N, Wu F G, Chen Z. Action of gold nanospikes‑based nanoradiosensitizers: Cellular internalization, radiotherapy, and autophagy[J]. ACS Appl. Mater. Interfaces, 2017,9(37):31526-31542. doi: 10.1021/acsami.7b09599

    28. [28]

      Deng W, Chen W J, Clement S, Guller A, Zhao Z J, Engel A, Goldys E M. Controlled gene and drug release from a liposomal delivery platform triggered by X-ray radiation[J]. Nat. Commun., 2018,92713. doi: 10.1038/s41467-018-05118-3

    29. [29]

      Luo D, Wang X N, Zeng S, Ramamurthy G, Burda C, Basilion J P. Targeted gold nanocluster-enhanced radiotherapy of prostate cancer[J]. Small, 2019,15(34)1900968. doi: 10.1002/smll.201900968

    30. [30]

      Zhang X D, Chen J, Luo Z T, Wu D, Shen X, Song S S, Sun Y M, Liu P X, Zhao J, Huo S D, Fan S J, Fan F Y, Liang X J, Xie J P. Enhanced tumor accumulation of sub-2 nm gold nanoclusters for cancer radiation therapy[J]. Adv. Healthc. Mater., 2014,3(1):133-141. doi: 10.1002/adhm.201300189

    31. [31]

      Jia T T, Yang G, Mo S J, Wang Z Y, Li B J, Ma W, Guo Y X, Chen X Y, Zhao X L, Liu J Q, Zang S Q. Atomically precise gold levonorgestrel nanocluster as a radiosensitizer for enhanced cancer therapy[J]. ACS Nano, 2019,13(7):8320-8328. doi: 10.1021/acsnano.9b03767

    32. [32]

      Xuan S J, Barros A O D S, Nunes R C, Ricci-Junior E, Silva A X D, Sahid M, Alencar L M R, Santos C C D, Morandi V, Alexis F, Iram S H, Santos-Oliveira R. Radioactive gold nanocluster (198-AuNCs) showed inhibitory effects on cancer cells lines[J]. Artif. Cell. Nanomed. Biotechnol., 2020,48(1):1214-1221. doi: 10.1080/21691401.2020.1821698

    33. [33]

      Wang H Y, Chang J J, Shi M W, Pan W, Li N, Tang B. A dual-targeted organic photothermal agent for enhanced photothermal therapy[J]. Angew. Chem. Int. Ed., 2019,58(4):1057-1061. doi: 10.1002/anie.201811273

    34. [34]

      Hayashi K, Maruhashi T, Nakamura M, Sakamoto W, Yogo T. One-pot synthesis of dual stimulus-responsive degradable hollow hybrid nanoparticles for image-guided trimodal therapy[J]. Adv. Funct. Mater., 2017,27(12)8613.

    35. [35]

      Yang K, Zhao S J, Li B L, Wang B H, Lan M H, Song X Z. Low temperature photothermal therapy: Advances and perspectives[J]. Coord. Chem. Rev., 2022,454214330. doi: 10.1016/j.ccr.2021.214330

    36. [36]

      LIU T, TIAN Y T, GAO K, HAN X W, MIN R N, ZHAO W J, SUN X Y, YIN C X. A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy[J]. Chinese J. Inorg. Chem., 2024,40(8):1622-1632.  

    37. [37]

      Katla S K, Zhang J, Castro E, Bernal R A, Li X J. Atomically precise Au25(SG)18 nanoclusters: Rapid single-step synthesis and application in photothermal therapy[J]. ACS Appl. Mater. Interfaces, 2018,10(1):75-82. doi: 10.1021/acsami.7b12614

    38. [38]

      Jiang X Y, Du B J, Huang Y Y, Yu M X, Zheng J. Cancer photothermal therapy with ICG-conjugated gold nanoclusters[J]. Bioconjugate Chem., 2020,31(5):1522-1528. doi: 10.1021/acs.bioconjchem.0c00172

    39. [39]

      Zheng Y K, Zhu Y X, Dai J H, Lei J J, You J C, Chen N, Wang L Q, Luo M, Wu J B. Atomically precise Au nanocluster-embedded carrageenan for single near-infrared light-triggered photothermal and photodynamic antibacterial therapy[J]. Int. J. Biol. Macromol., 2023,230123452. doi: 10.1016/j.ijbiomac.2023.123452

    40. [40]

      Zhou J, Wang Q L, Geng S Z, Lou R, Yin Q W, Ye W R. Construction and evaluation of tumor nucleus-targeting nanocomposite for cancer dual-mode imaging-guiding photodynamic therapy/photothermal therapy[J]. Mater. Sci. Eng. C-Mater. Biol. Appl., 2019,102:541-551. doi: 10.1016/j.msec.2019.04.088

    41. [41]

      Chatterjee D K, Fong L S, Zhang Y. Nanoparticles in photodynamic therapy: An emerging paradigm[J]. Adv. Drug Deliv. Rev., 2008,60(15):1627-1637. doi: 10.1016/j.addr.2008.08.003

    42. [42]

      Di Y F, Deng R Z, Liu Z, Mao Y L, Gao Y K, Zhao Q F, Wang S L. Optimized strategies of ROS-based nanodynamic therapies for tumor theranostics[J]. Biomaterials, 2023,303122391. doi: 10.1016/j.biomaterials.2023.122391

    43. [43]

      Morton C, Szeimies R, Sidoroff A, Wennberg A, Basset-Seguin N, Calzavara-Pinton P, Gilaberte Y, Hofbauer G, Hunger R, Karrer S, Lehmann P, Piaserico S, Ulrich C. European dermatology forum guidelines on topical photodynamic therapy[J]. Eur. J. Dermatol., 2015,25(4):296-311. doi: 10.1684/ejd.2015.2570

    44. [44]

      He S Q, Wang L L, Wu D X, Tong F, Zhao H, Li H M, Gong T, Gao H L, Zhou Y. Dual-responsive supramolecular photodynamic nanomedicine with activatable immunomodulation for enhanced antitumor therapy[J]. Acta Pharm. Sin. B, 2024,14(2):765-780. doi: 10.1016/j.apsb.2023.10.006

    45. [45]

      Qian H F, Zhu M Z, Wu Z K, Jin R C. Quantum sized gold nanoclusters with atomic precision[J]. Acc. Chem. Res., 2012,45(9):1470-1479. doi: 10.1021/ar200331z

    46. [46]

      Bonačić-Koutecký V, Antoine R. Enhanced two-photon absorption of ligated silver and gold nanoclusters: Theoretical and experimental assessments[J]. Nanoscale, 2019,11(26):12436-12448. doi: 10.1039/C9NR01826C

    47. [47]

      Fakhouri H, Bakulić M P, Zhang I, Yuan H, Bain D, Rondepierre F, Brevet P, Maršić Ž S, Antoine R, Bonačić-Koutecký V, Maysinger D. Ligand impact on reactive oxygen species generation of Au10 and Au25 nanoclusters upon one-and two-photon excitation[J]. Commun. Chem., 2023,697. doi: 10.1038/s42004-023-00895-5

    48. [48]

      Kawasaki H, Kumar S, Li G, Li G, Zeng C J, Kauffman D R, Yoshimoto J, Iwasaki Y, Jin R C. Generation of singlet oxygen by photoexcited Au25(SR)18 clusters[J]. Chem. Mater., 2014,26(9):2777-2788. doi: 10.1021/cm500260z

    49. [49]

      Yu Y, Geng J L, Ong E Y X, Chellappan V, Tan Y N. Bovine serum albulmin protein-templated silver nanocluster (BSA-Ag13): An effective singlet oxygen generator for photodynamic cancer therapy[J]. Adv. Healthc. Mater., 2016,5(19):2528-2535. doi: 10.1002/adhm.201600312

    50. [50]

      Feng L L, He F, Dai Y L, Liu B, Yang G X, Gai S L, Niu N, Lv R C, Li C X, Yang P P. A versatile near infrared light triggered dual-photosensitizer for synchronous bioimaging and photodynamic therapy[J]. ACS Appl. Mater. Interfaces, 2017,9(15):12993-13008. doi: 10.1021/acsami.7b00651

    51. [51]

      Fan C, Zhai S Y, Hu W, Chi S Y, Song D, Liu Z H. Gold nanoclusters as a GSH activated mitochondrial targeting photosensitizer for efficient treatment of malignant tumors[J]. RSC Adv., 2021,11(35):21384-21389. doi: 10.1039/D1RA03469C

    52. [52]

      Sun D Q, Sun X X, Zhang X, Wu J P, Shi X B, Sun J, Lou C, He Z G, Zhang S W. Emerging chemodynamic nanotherapeutics for cancer treatment[J]. Adv. Healthc. Mater., 2024,13(22)2400809. doi: 10.1002/adhm.202400809

    53. [53]

      Gao F, Dong J H, Xue C, Lu X X, Cai Y, Tang Z Y, Ou C J. Tumor-targeting multiple metabolic regulations for bursting antitumor efficacy of chemodynamic therapy[J]. Small, 2024,20(26)2310248. doi: 10.1002/smll.202310248

    54. [54]

      Liu R, Wang Y L, Yuan Q, An D Y, Li J Y, Gao X Y. The Au clusters induce tumor cell apoptosis via specifically targeting thioredoxin reductase 1 (TrxR1) and suppressing its activity[J]. Chem. Commun., 2014,50(73):10687-10690. doi: 10.1039/C4CC03320E

    55. [55]

      Li Q, Yuan Q, Zhao M H, Ya W Y, Gao L, Liu R, Wang Y L, Gong Y, Gao F P, Gao X Y. Au nanoclusters suppress chronic lymphocytic leukaemia cells by inhibiting thioredoxin reductase 1 to induce intracellular oxidative stress and apoptosis[J]. Sci. Bull., 2017,62(8):537-545. doi: 10.1016/j.scib.2017.03.024

    56. [56]

      Yang Z Z, Yang A L, Ma W, Ma K, Lv Y K, Peng P, Zang S Q, Li B J. Atom-precise fluorescent copper cluster for tumor microenvironment targeting and transient chemodynamic cancer therapy[J]. J. Nanobiotechnol., 2022,2020. doi: 10.1186/s12951-021-01207-6

    57. [57]

      Jiang Z X, Guan J, Qian J, Zhan C Y. Peptide ligand-mediated targeted drug delivery of nanomedicines[J]. Biomater. Sci., 2019,7(2):461-471. doi: 10.1039/C8BM01340C

    58. [58]

      Jia C Y, Deacon G B, Zhang Y J, Gao C Z. Platinum(Ⅳ) antitumor complexes and their nano-drug delivery[J]. Coord. Chem. Rev., 2021,429213640. doi: 10.1016/j.ccr.2020.213640

    59. [59]

      Jiang X M, Han W B, Liu J Q, Mao J M, Lee M J, Rodriguez M, Li Y Y, Lou T K, Xu Z W, Yang K T, Bissonette M, Weichselbaum R R, Lin W B. Tumor-activatable nanoparticles target low-density lipoprotein receptor to enhance drug delivery and antitumor efficacy[J]. Adv. Sci., 2022,9(24)2201614. doi: 10.1002/advs.202201614

    60. [60]

      Qi J X, Liu Y X, Xu H J, Xue T T, Su Y, Lin Z K. Anti-cancer effect of melittin-Au25(MHA)18 complexes on human cervical cancer HeLa cells[J]. J. Drug Deliv. Sci. Tecchnol., 2022,68103078. doi: 10.1016/j.jddst.2021.103078

    61. [61]

      Xu M M, Jia T T, Li B J, Ma W, Chen X Y, Zhao X L, Zang S Q. Tuning the properties of atomically precise gold nanoclusters for biolabeling and drug delivery[J]. Chem. Commun., 2020,56(62):8766-8769. doi: 10.1039/D0CC03498C

    62. [62]

      Pang Z Y, Yan W X, Yang J, Li Q Z, Guo Y, Zhou D J, Jiang X Y. Multifunctional gold nanoclusters for effective targeting, near-infrared fluorescence imaging, diagnosis, and treatment of cancer lymphatic metastasis[J]. ACS Nano, 2022,16(10):16019-16037. doi: 10.1021/acsnano.2c03752

    63. [63]

      Dai Y N, Su J Z, Wu K, Ma W K, Wang B, Li M X, Sun P F, Shen Q M, Wang Q, Fan Q L. Multifunctional thermosensitive liposomes based on natural phase-change material: Near-infrared light-triggered drug release and multimodal imaging-guided cancer combination therapy[J]. ACS Appl. Mater. Interfaces, 2019,11(11):10540-10553. doi: 10.1021/acsami.8b22748

    64. [64]

      Zhang X G, Tang J J, Li C, Lu Y, Cheng L L, Liu J. A targeting black phosphorus nanoparticle based immune cells nano-regulator for photodynamic/photothermal and photo-immunotherapy[J]. Bioact. Mater., 2021,6(2):472-489.

    65. [65]

      Wang Y K, Li W J, Lin B, Yang Y, Ning P B, Tao X F, Lv R C. NIR-Ⅱ imaging-guided photothermal cancer therapy combined with enhanced immunogenic death[J]. Biomater. Sci., 2023,11(15):5177-5185. doi: 10.1039/D3BM00700F

    66. [66]

      Zhang X M, Lin S, Zhao F, Zhang J, Lei S, Bai F, Liu Q, Wu J Y, He T, Huang P, Lin J. Programmably controllable delivery of metastable ferrous ions for multiscale dynamic imaging guided photothermal primed chemodynamic therapy[J]. Adv. Mater., 2023,35(25)2210876. doi: 10.1002/adma.202210876

    67. [67]

      Yang Y, Zhou Y L, Wang S X, Wang X Y, Liu X, Xie A J, Shen Y H, Zhu M Z. A structurally precise AgxAu25-x nanocluster based cancer theranostic platform with tri-targeting/in situ O2-generation/aggregation enhanced fluorescence imaging/photothermal-photodynamic therapies[J]. Chem. Commun., 2020,56(68):9842-9845. doi: 10.1039/D0CC02946G

    68. [68]

      Liu X Y, Yang Y, Wang X Y, Liu X, Cheng H L, Wang P S, Shen Y H, Xie A J, Zhu M Z. Self-assembled Au4Cu4/Au25 NCs@liposome tumor nanotheranostics with PT/fluorescence imaging-guided synergetic PTT/PDT[J]. J. Mater. Chem. B, 2021,9(32):6396-6405. doi: 10.1039/D1TB01092A

    69. [69]

      He F, Yang G X, Yang P P, Yu Y X, Lv R C, Li C X, Dai Y L, Gai S L, Lin J. A new single 808 nm NIR light-induced imaging-guided multifunctional cancer therapy platform[J]. Adv. Funct. Mater., 2015,25(25):3966-3976. doi: 10.1002/adfm.201500464

    70. [70]

      Lv R C, Yang P P, He F, Gai S L, Yang G X, Dai Z Y, Hou Z Y, Lin J. An imaging-guided platform for synergistic photodynamic/photothermal/chemo‑therapy with pH/temperature‑responsive drug release[J]. Biomaterials, 2015,63:115-127. doi: 10.1016/j.biomaterials.2015.05.016

    71. [71]

      He F, Feng L L, Yang P P, Liu B, Gai S L, Yang G X, Dai Y L, Lin J. Enhanced up/down-conversion luminescence and heat: Simultaneously achieving in one single core-shell structure for multimodal imaging guided therapy[J]. Biomaterials, 2016,105:77-88. doi: 10.1016/j.biomaterials.2016.07.031

    72. [72]

      Rocha U, Kumar K U, Jacinto C, Villa I, Sanz-Rodrígue F, Cruz M C, Juarranz A, Carrasco E, Veggel F C, Bovero E, Solé J G, Jaque D. Neodymium-doped LaF3 nanoparticles for fluorescence bioimaging in the second biological window[J]. Small, 2014,10(6):1141-1154. doi: 10.1002/smll.201301716

    73. [73]

      Wen H L, Zhu H, Chen X, Huang T K, Wang B L, Zhu G Y, Yu S F, Wang F. Upconverting near-infrared light through energy management in core-shell-shell nanoparticles[J]. Angew. Chem. Int. Ed., 2013,52(50):13419-13423. doi: 10.1002/anie.201306811

    74. [74]

      Li W L, Xin H, Zhang Y N, Feng C, Li Q D, Kong D X, Sun Z F, Xu Z W, Xiao J M, Tian G, Zhang G L, Liu L. NIR-Ⅱ fluorescence imaging-guided oxygen self-sufficient nano-platform for precise enhanced photodynamic therapy[J]. Small, 2022,18(51)2205647. doi: 10.1002/smll.202205647

    75. [75]

      Bi H T, Dai Y L, Yang P P, Xu J T, Yang D, Gai S L, He F, An G H, Zhong C N, Lin J. Glutathione and H2O2 consumption promoted photodynamic and chemotherapy based on biodegradable MnO2-Pt@Au25 nanosheets[J]. Chem. Eng. J., 2019,356:543-553. doi: 10.1016/j.cej.2018.09.076

    76. [76]

      Yang G, Pan X X, Feng W B, Yao Q F, Jiang F Y, Du F L, Zhou X F, Xie J P, Yuan X. Engineering Au44 nanoclusters for NIR-Ⅱ luminescence imaging-guided photoactivatable cancer immunotherapy[J]. ACS Nano, 2023,17(16):15605-15614. doi: 10.1021/acsnano.3c02370

    77. [77]

      Liu P, Yang W T, Shi L, Zhang H Y, Xu Y, Wang P R, Zhang G L, Chen W R, Zhang B B, Wang X L. Concurrent photothermal therapy and photodynamic therapy for cutaneous squamous cell carcinoma by gold nanoclusters under a single NIR laser irradiation[J]. J. Mater. Chem. B, 2019,7(44):6924-6933. doi: 10.1039/C9TB01573F

  • 加载中
    1. [1]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    2. [2]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    3. [3]

      Lubing Qin Fang Sun Meiyin Li Hao Fan Likai Wang Qing Tang Chundong Wang Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008

    4. [4]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    5. [5]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    6. [6]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    7. [7]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    8. [8]

      Yanting HUANGHua XIANGMei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196

    9. [9]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    10. [10]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    11. [11]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    12. [12]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    13. [13]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    14. [14]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    15. [15]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    16. [16]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    17. [17]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    18. [18]

      Guoxian Zhu Jing Chen Rongkai Pan . Enhancing the Teaching Quality of Atomic Structure: Insights and Strategies. University Chemistry, 2024, 39(3): 376-383. doi: 10.3866/PKU.DXHX202305027

    19. [19]

      Jin Jia Shangda Jiang . Is the z Axis Special in Atomic Structure?. University Chemistry, 2024, 39(6): 400-404. doi: 10.12461/PKU.DXHX202403091

    20. [20]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

Metrics
  • PDF Downloads(2)
  • Abstract views(51)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return