Research advances of atomic precision coinage metal nanoclusters in tumor therapy
- Corresponding author: Yongbo SONG, ybsong860@ahmu.edu.cn
Citation: Tingting XU, Wenjing ZHANG, Yongbo SONG. Research advances of atomic precision coinage metal nanoclusters in tumor therapy[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229
Song G S, Chen Y Y, Liang C, Yi X, Liu J J, Sun X Q, Shen S D, Yang K, Liu Z. Catalase-loaded TaOx nanoshells as bio-nanoreactors combining high-Z element and enzyme delivery for enhancing radiotherapy[J]. Adv. Mater., 2016,28(33):7143-7148. doi: 10.1002/adma.201602111
Sung H, Ferlay J, Rebeccal L, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA-Cancer J. Clin., 2021,71(3):209-249. doi: 10.3322/caac.21660
Cabrita R, Lauss M, Sanna A, Donia M, Larsen M S, Mitra S, Johansson I, Phung B, Harbst K, Vallon-Christersson J, Schoiack A, Lövgren K, Warren S, Jirström K, Olsson H, Pietras K, Ingvar C, Isaksson K, Schadendorf D, Schmidt H, Bastholt L, Carneiro A, Wargo J A, Svane I M, Jönsson G. Tertiary lymphoid structures improve immunotherapy and survival in melanoma[J]. Nature, 2020,577:561-565. doi: 10.1038/s41586-019-1914-8
Holohan C, Schaeybroeck V S, Longley D B, Johnston P G. Cancer drug resistance: An evolving paradigm[J]. Nat. Rev. Cancer, 2013,13:714-726. doi: 10.1038/nrc3599
Yan H, Xu P C, Cong H L, Yu B, Shen Y Q. Research progress in construction of organic carrier drug delivery platform using tumor microenvironment[J]. Mater. Today Chem., 2024,37101997. doi: 10.1016/j.mtchem.2024.101997
Kurian A G, Singh R K, Patel K D, Lee J H, Kim H W. Multifunctional GelMA platforms with nanomaterials for advanced tissue therapeutics[J]. Bioact. Mater., 2022,8:267-295.
Cheng W, Nie J P, Gao N S, Liu G, Tao W, Xiao X J, Jiang L J, Liu Z G, Zeng X W, Mei L. A multifunctional nanoplatform against multidrug resistant cancer: Merging the best of targeted chemo/gene/photothermal therapy[J]. Adv. Funct. Mater., 2017,27(45)1704135. doi: 10.1002/adfm.201704135
Yang L T, Kim T H, Cho H Y, Luo J, Lee J M, Chueng S D, Hou Y, Yin P T, Han J, Kim J H, Chung B G, Choi J W, Lee K B. Hybrid graphene-gold nanoparticle-based nucleic acid conjugates for cancer-specific multimodal imaging and combined therapeutics[J]. Adv. Funct. Mater., 2021,31(5)2006918. doi: 10.1002/adfm.202006918
JIA S F, HAO X L, WEN Y Z, ZHANG Y. Synthesis, characterization, and antitumor activity of ruthenium complexes based on schiff base ligand[J]. Chinese J. Inorg. Chem., 2022,38(10):1919-1926. doi: 10.11862/CJIC.2022.191
Wu P H, Opadele A E, Onodera Y, Nam J M. Targeting integrins in cancer nanomedicine: Applications in cancer diagnosis and therapy[J]. Cancers, 2019,11(11)1783. doi: 10.3390/cancers11111783
Cassano R, Cuconato M, Calviello G, Serini S, Trombino S. Recent advances in nanotechnology for the treatment of melanoma[J]. Molecules, 2021,26(4)785. doi: 10.3390/molecules26040785
Kang X, Li Y W, Zhu M Z, Jin R C. Atomically precise alloy nanoclusters: Syntheses, structures, and properties[J]. Chem. Soc. Rev., 2020,49(17):6443-6514. doi: 10.1039/C9CS00633H
Jin R C, Li G, Sharma S, Li Y W, Du X S. Toward active-site tailoring in heterogeneous catalysis by atomically precise metal nanoclusters with crystallographic structures[J]. Chem. Rev., 2021,121(2):567-648. doi: 10.1021/acs.chemrev.0c00495
Kawawaki T, Kataoka Y, Hirata M, Iwamatsu Y, Hossain S, Negishi Y. Toward the creation of high-performance heterogeneous catalysts by controlled ligand desorption from atomically precise metal nanoclusters[J]. Nanoscale Horiz., 2021,6(6):409-448. doi: 10.1039/D1NH00046B
ZHOU P, CAI X, MA Q X, LIU X. Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster[J]. Chinese J. Inorg. Chem., 2024,40(7):1254-1260.
Zhang X D, Wu D, Shen X, Liu P X, Fan F Y, Fan S J. In vivo renal clearance, biodistribution, toxicity of gold nanoclusters[J]. Biomaterials, 2012,33(18):4628-4638. doi: 10.1016/j.biomaterials.2012.03.020
Du B J, Jiang X Y, Das A, Zhou Q H, Yu M X, Jin R C, Zheng J. Glomerular barrier behaves as an atomically precise bandpass filter in a sub-nanometre regime[J]. Nat. Nanotechnol., 2017,12:1096-1102. doi: 10.1038/nnano.2017.170
Zhang C Y, Zhang N, Niu W C, Li R H, Liu Y N, Mu Y L, Xu C, Yao Q Q, Gao X Y. Ultrasmall platinum nanoclusters: A potent chemotherapeutic drug for cancer-specific DNA damage with optimizing therapeutic efficacy while minimizing systemic toxicity[J]. Nano Today, 2024,55102195. doi: 10.1016/j.nantod.2024.102195
He Z H, Qu S H, Shang L. Perspectives on protein-nanoparticle interactions at the in vivo level[J]. Langnuir, 2024,40(15):7781-7790. doi: 10.1021/acs.langmuir.4c00181
SHANG L, WEN M Y. Recent progress in exploring the biological interactions of water-soluble fluorescent gold and silver nanoclusters[J]. Journal of Anhui University (Natural Science Edition), 2017,41(6):38-45.
Yang D, Yang G X, Gai S L, He F, An G H, Dai Y L, Lv R C, Yang P P. Au25 cluster functionalized metal-organic nanostructures for magnetically targeted photodynamic/photothermal therapy triggered by single wavelength 808 nm near-infrared light[J]. Nanoscale, 2015,7(46):19568-19578. doi: 10.1039/C5NR06192J
Pan X X, Yao Y D, Zhang M X, Yuan X, Yao Q F, Hu W P. Enzyme-mimic catalytic activities and biomedical applications of noble metal nanoclusters[J]. Nanoscale, 2024,16(17):8196-8215. doi: 10.1039/D4NR00282B
Yang X, Gao L, Guo Q, Li Y J, Ma Y, Yang J, Gong C Y, Yi C. Nanomaterials for radiotherapeutics-based multimodal synergistic cancer therapy[J]. Nano Res., 2020,13(10):2579-2594. doi: 10.1007/s12274-020-2722-z
Arnold K M, Flynn N J, Raben A, Romak L, Yu Y, Dicker A P, Mourtada F, Sims-Mourtada J. The impact of radiation on the tumor microenvironment: Effect of dose and fractionation schedules[J]. Cancer Growth and Metastasis, 2018,111179064418761639. doi: 10.1177/1179064418761639
Song G S, Cheng L, Chao Y, Yang K, Liu Z. Emerging nanotechnology and advanced materials for cancer radiation therapy[J]. Adv. Mater., 2017,29(32)1700996. doi: 10.1002/adma.201700996
Goswami N, Luo Z T, Yuan X, Leong D T, Xie J P. Engineering gold-based radiosensitizers for cancer radiotherapy[J]. Mater. Horiz., 2017,4(5):817-831. doi: 10.1039/C7MH00451F
Ma N N, Liu P D, He N Y, Gu N, Wu F G, Chen Z. Action of gold nanospikes‑based nanoradiosensitizers: Cellular internalization, radiotherapy, and autophagy[J]. ACS Appl. Mater. Interfaces, 2017,9(37):31526-31542. doi: 10.1021/acsami.7b09599
Deng W, Chen W J, Clement S, Guller A, Zhao Z J, Engel A, Goldys E M. Controlled gene and drug release from a liposomal delivery platform triggered by X-ray radiation[J]. Nat. Commun., 2018,92713. doi: 10.1038/s41467-018-05118-3
Luo D, Wang X N, Zeng S, Ramamurthy G, Burda C, Basilion J P. Targeted gold nanocluster-enhanced radiotherapy of prostate cancer[J]. Small, 2019,15(34)1900968. doi: 10.1002/smll.201900968
Zhang X D, Chen J, Luo Z T, Wu D, Shen X, Song S S, Sun Y M, Liu P X, Zhao J, Huo S D, Fan S J, Fan F Y, Liang X J, Xie J P. Enhanced tumor accumulation of sub-2 nm gold nanoclusters for cancer radiation therapy[J]. Adv. Healthc. Mater., 2014,3(1):133-141. doi: 10.1002/adhm.201300189
Jia T T, Yang G, Mo S J, Wang Z Y, Li B J, Ma W, Guo Y X, Chen X Y, Zhao X L, Liu J Q, Zang S Q. Atomically precise gold levonorgestrel nanocluster as a radiosensitizer for enhanced cancer therapy[J]. ACS Nano, 2019,13(7):8320-8328. doi: 10.1021/acsnano.9b03767
Xuan S J, Barros A O D S, Nunes R C, Ricci-Junior E, Silva A X D, Sahid M, Alencar L M R, Santos C C D, Morandi V, Alexis F, Iram S H, Santos-Oliveira R. Radioactive gold nanocluster (198-AuNCs) showed inhibitory effects on cancer cells lines[J]. Artif. Cell. Nanomed. Biotechnol., 2020,48(1):1214-1221. doi: 10.1080/21691401.2020.1821698
Wang H Y, Chang J J, Shi M W, Pan W, Li N, Tang B. A dual-targeted organic photothermal agent for enhanced photothermal therapy[J]. Angew. Chem. Int. Ed., 2019,58(4):1057-1061. doi: 10.1002/anie.201811273
Hayashi K, Maruhashi T, Nakamura M, Sakamoto W, Yogo T. One-pot synthesis of dual stimulus-responsive degradable hollow hybrid nanoparticles for image-guided trimodal therapy[J]. Adv. Funct. Mater., 2017,27(12)8613.
Yang K, Zhao S J, Li B L, Wang B H, Lan M H, Song X Z. Low temperature photothermal therapy: Advances and perspectives[J]. Coord. Chem. Rev., 2022,454214330. doi: 10.1016/j.ccr.2021.214330
LIU T, TIAN Y T, GAO K, HAN X W, MIN R N, ZHAO W J, SUN X Y, YIN C X. A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy[J]. Chinese J. Inorg. Chem., 2024,40(8):1622-1632.
Katla S K, Zhang J, Castro E, Bernal R A, Li X J. Atomically precise Au25(SG)18 nanoclusters: Rapid single-step synthesis and application in photothermal therapy[J]. ACS Appl. Mater. Interfaces, 2018,10(1):75-82. doi: 10.1021/acsami.7b12614
Jiang X Y, Du B J, Huang Y Y, Yu M X, Zheng J. Cancer photothermal therapy with ICG-conjugated gold nanoclusters[J]. Bioconjugate Chem., 2020,31(5):1522-1528. doi: 10.1021/acs.bioconjchem.0c00172
Zheng Y K, Zhu Y X, Dai J H, Lei J J, You J C, Chen N, Wang L Q, Luo M, Wu J B. Atomically precise Au nanocluster-embedded carrageenan for single near-infrared light-triggered photothermal and photodynamic antibacterial therapy[J]. Int. J. Biol. Macromol., 2023,230123452. doi: 10.1016/j.ijbiomac.2023.123452
Zhou J, Wang Q L, Geng S Z, Lou R, Yin Q W, Ye W R. Construction and evaluation of tumor nucleus-targeting nanocomposite for cancer dual-mode imaging-guiding photodynamic therapy/photothermal therapy[J]. Mater. Sci. Eng. C-Mater. Biol. Appl., 2019,102:541-551. doi: 10.1016/j.msec.2019.04.088
Chatterjee D K, Fong L S, Zhang Y. Nanoparticles in photodynamic therapy: An emerging paradigm[J]. Adv. Drug Deliv. Rev., 2008,60(15):1627-1637. doi: 10.1016/j.addr.2008.08.003
Di Y F, Deng R Z, Liu Z, Mao Y L, Gao Y K, Zhao Q F, Wang S L. Optimized strategies of ROS-based nanodynamic therapies for tumor theranostics[J]. Biomaterials, 2023,303122391. doi: 10.1016/j.biomaterials.2023.122391
Morton C, Szeimies R, Sidoroff A, Wennberg A, Basset-Seguin N, Calzavara-Pinton P, Gilaberte Y, Hofbauer G, Hunger R, Karrer S, Lehmann P, Piaserico S, Ulrich C. European dermatology forum guidelines on topical photodynamic therapy[J]. Eur. J. Dermatol., 2015,25(4):296-311. doi: 10.1684/ejd.2015.2570
He S Q, Wang L L, Wu D X, Tong F, Zhao H, Li H M, Gong T, Gao H L, Zhou Y. Dual-responsive supramolecular photodynamic nanomedicine with activatable immunomodulation for enhanced antitumor therapy[J]. Acta Pharm. Sin. B, 2024,14(2):765-780. doi: 10.1016/j.apsb.2023.10.006
Qian H F, Zhu M Z, Wu Z K, Jin R C. Quantum sized gold nanoclusters with atomic precision[J]. Acc. Chem. Res., 2012,45(9):1470-1479. doi: 10.1021/ar200331z
Bonačić-Koutecký V, Antoine R. Enhanced two-photon absorption of ligated silver and gold nanoclusters: Theoretical and experimental assessments[J]. Nanoscale, 2019,11(26):12436-12448. doi: 10.1039/C9NR01826C
Fakhouri H, Bakulić M P, Zhang I, Yuan H, Bain D, Rondepierre F, Brevet P, Maršić Ž S, Antoine R, Bonačić-Koutecký V, Maysinger D. Ligand impact on reactive oxygen species generation of Au10 and Au25 nanoclusters upon one-and two-photon excitation[J]. Commun. Chem., 2023,697. doi: 10.1038/s42004-023-00895-5
Kawasaki H, Kumar S, Li G, Li G, Zeng C J, Kauffman D R, Yoshimoto J, Iwasaki Y, Jin R C. Generation of singlet oxygen by photoexcited Au25(SR)18 clusters[J]. Chem. Mater., 2014,26(9):2777-2788. doi: 10.1021/cm500260z
Yu Y, Geng J L, Ong E Y X, Chellappan V, Tan Y N. Bovine serum albulmin protein-templated silver nanocluster (BSA-Ag13): An effective singlet oxygen generator for photodynamic cancer therapy[J]. Adv. Healthc. Mater., 2016,5(19):2528-2535. doi: 10.1002/adhm.201600312
Feng L L, He F, Dai Y L, Liu B, Yang G X, Gai S L, Niu N, Lv R C, Li C X, Yang P P. A versatile near infrared light triggered dual-photosensitizer for synchronous bioimaging and photodynamic therapy[J]. ACS Appl. Mater. Interfaces, 2017,9(15):12993-13008. doi: 10.1021/acsami.7b00651
Fan C, Zhai S Y, Hu W, Chi S Y, Song D, Liu Z H. Gold nanoclusters as a GSH activated mitochondrial targeting photosensitizer for efficient treatment of malignant tumors[J]. RSC Adv., 2021,11(35):21384-21389. doi: 10.1039/D1RA03469C
Sun D Q, Sun X X, Zhang X, Wu J P, Shi X B, Sun J, Lou C, He Z G, Zhang S W. Emerging chemodynamic nanotherapeutics for cancer treatment[J]. Adv. Healthc. Mater., 2024,13(22)2400809. doi: 10.1002/adhm.202400809
Gao F, Dong J H, Xue C, Lu X X, Cai Y, Tang Z Y, Ou C J. Tumor-targeting multiple metabolic regulations for bursting antitumor efficacy of chemodynamic therapy[J]. Small, 2024,20(26)2310248. doi: 10.1002/smll.202310248
Liu R, Wang Y L, Yuan Q, An D Y, Li J Y, Gao X Y. The Au clusters induce tumor cell apoptosis via specifically targeting thioredoxin reductase 1 (TrxR1) and suppressing its activity[J]. Chem. Commun., 2014,50(73):10687-10690. doi: 10.1039/C4CC03320E
Li Q, Yuan Q, Zhao M H, Ya W Y, Gao L, Liu R, Wang Y L, Gong Y, Gao F P, Gao X Y. Au nanoclusters suppress chronic lymphocytic leukaemia cells by inhibiting thioredoxin reductase 1 to induce intracellular oxidative stress and apoptosis[J]. Sci. Bull., 2017,62(8):537-545. doi: 10.1016/j.scib.2017.03.024
Yang Z Z, Yang A L, Ma W, Ma K, Lv Y K, Peng P, Zang S Q, Li B J. Atom-precise fluorescent copper cluster for tumor microenvironment targeting and transient chemodynamic cancer therapy[J]. J. Nanobiotechnol., 2022,2020. doi: 10.1186/s12951-021-01207-6
Jiang Z X, Guan J, Qian J, Zhan C Y. Peptide ligand-mediated targeted drug delivery of nanomedicines[J]. Biomater. Sci., 2019,7(2):461-471. doi: 10.1039/C8BM01340C
Jia C Y, Deacon G B, Zhang Y J, Gao C Z. Platinum(Ⅳ) antitumor complexes and their nano-drug delivery[J]. Coord. Chem. Rev., 2021,429213640. doi: 10.1016/j.ccr.2020.213640
Jiang X M, Han W B, Liu J Q, Mao J M, Lee M J, Rodriguez M, Li Y Y, Lou T K, Xu Z W, Yang K T, Bissonette M, Weichselbaum R R, Lin W B. Tumor-activatable nanoparticles target low-density lipoprotein receptor to enhance drug delivery and antitumor efficacy[J]. Adv. Sci., 2022,9(24)2201614. doi: 10.1002/advs.202201614
Qi J X, Liu Y X, Xu H J, Xue T T, Su Y, Lin Z K. Anti-cancer effect of melittin-Au25(MHA)18 complexes on human cervical cancer HeLa cells[J]. J. Drug Deliv. Sci. Tecchnol., 2022,68103078. doi: 10.1016/j.jddst.2021.103078
Xu M M, Jia T T, Li B J, Ma W, Chen X Y, Zhao X L, Zang S Q. Tuning the properties of atomically precise gold nanoclusters for biolabeling and drug delivery[J]. Chem. Commun., 2020,56(62):8766-8769. doi: 10.1039/D0CC03498C
Pang Z Y, Yan W X, Yang J, Li Q Z, Guo Y, Zhou D J, Jiang X Y. Multifunctional gold nanoclusters for effective targeting, near-infrared fluorescence imaging, diagnosis, and treatment of cancer lymphatic metastasis[J]. ACS Nano, 2022,16(10):16019-16037. doi: 10.1021/acsnano.2c03752
Dai Y N, Su J Z, Wu K, Ma W K, Wang B, Li M X, Sun P F, Shen Q M, Wang Q, Fan Q L. Multifunctional thermosensitive liposomes based on natural phase-change material: Near-infrared light-triggered drug release and multimodal imaging-guided cancer combination therapy[J]. ACS Appl. Mater. Interfaces, 2019,11(11):10540-10553. doi: 10.1021/acsami.8b22748
Zhang X G, Tang J J, Li C, Lu Y, Cheng L L, Liu J. A targeting black phosphorus nanoparticle based immune cells nano-regulator for photodynamic/photothermal and photo-immunotherapy[J]. Bioact. Mater., 2021,6(2):472-489.
Wang Y K, Li W J, Lin B, Yang Y, Ning P B, Tao X F, Lv R C. NIR-Ⅱ imaging-guided photothermal cancer therapy combined with enhanced immunogenic death[J]. Biomater. Sci., 2023,11(15):5177-5185. doi: 10.1039/D3BM00700F
Zhang X M, Lin S, Zhao F, Zhang J, Lei S, Bai F, Liu Q, Wu J Y, He T, Huang P, Lin J. Programmably controllable delivery of metastable ferrous ions for multiscale dynamic imaging guided photothermal primed chemodynamic therapy[J]. Adv. Mater., 2023,35(25)2210876. doi: 10.1002/adma.202210876
Yang Y, Zhou Y L, Wang S X, Wang X Y, Liu X, Xie A J, Shen Y H, Zhu M Z. A structurally precise AgxAu25-x nanocluster based cancer theranostic platform with tri-targeting/in situ O2-generation/aggregation enhanced fluorescence imaging/photothermal-photodynamic therapies[J]. Chem. Commun., 2020,56(68):9842-9845. doi: 10.1039/D0CC02946G
Liu X Y, Yang Y, Wang X Y, Liu X, Cheng H L, Wang P S, Shen Y H, Xie A J, Zhu M Z. Self-assembled Au4Cu4/Au25 NCs@liposome tumor nanotheranostics with PT/fluorescence imaging-guided synergetic PTT/PDT[J]. J. Mater. Chem. B, 2021,9(32):6396-6405. doi: 10.1039/D1TB01092A
He F, Yang G X, Yang P P, Yu Y X, Lv R C, Li C X, Dai Y L, Gai S L, Lin J. A new single 808 nm NIR light-induced imaging-guided multifunctional cancer therapy platform[J]. Adv. Funct. Mater., 2015,25(25):3966-3976. doi: 10.1002/adfm.201500464
Lv R C, Yang P P, He F, Gai S L, Yang G X, Dai Z Y, Hou Z Y, Lin J. An imaging-guided platform for synergistic photodynamic/photothermal/chemo‑therapy with pH/temperature‑responsive drug release[J]. Biomaterials, 2015,63:115-127. doi: 10.1016/j.biomaterials.2015.05.016
He F, Feng L L, Yang P P, Liu B, Gai S L, Yang G X, Dai Y L, Lin J. Enhanced up/down-conversion luminescence and heat: Simultaneously achieving in one single core-shell structure for multimodal imaging guided therapy[J]. Biomaterials, 2016,105:77-88. doi: 10.1016/j.biomaterials.2016.07.031
Rocha U, Kumar K U, Jacinto C, Villa I, Sanz-Rodrígue F, Cruz M C, Juarranz A, Carrasco E, Veggel F C, Bovero E, Solé J G, Jaque D. Neodymium-doped LaF3 nanoparticles for fluorescence bioimaging in the second biological window[J]. Small, 2014,10(6):1141-1154. doi: 10.1002/smll.201301716
Wen H L, Zhu H, Chen X, Huang T K, Wang B L, Zhu G Y, Yu S F, Wang F. Upconverting near-infrared light through energy management in core-shell-shell nanoparticles[J]. Angew. Chem. Int. Ed., 2013,52(50):13419-13423. doi: 10.1002/anie.201306811
Li W L, Xin H, Zhang Y N, Feng C, Li Q D, Kong D X, Sun Z F, Xu Z W, Xiao J M, Tian G, Zhang G L, Liu L. NIR-Ⅱ fluorescence imaging-guided oxygen self-sufficient nano-platform for precise enhanced photodynamic therapy[J]. Small, 2022,18(51)2205647. doi: 10.1002/smll.202205647
Bi H T, Dai Y L, Yang P P, Xu J T, Yang D, Gai S L, He F, An G H, Zhong C N, Lin J. Glutathione and H2O2 consumption promoted photodynamic and chemotherapy based on biodegradable MnO2-Pt@Au25 nanosheets[J]. Chem. Eng. J., 2019,356:543-553. doi: 10.1016/j.cej.2018.09.076
Yang G, Pan X X, Feng W B, Yao Q F, Jiang F Y, Du F L, Zhou X F, Xie J P, Yuan X. Engineering Au44 nanoclusters for NIR-Ⅱ luminescence imaging-guided photoactivatable cancer immunotherapy[J]. ACS Nano, 2023,17(16):15605-15614. doi: 10.1021/acsnano.3c02370
Liu P, Yang W T, Shi L, Zhang H Y, Xu Y, Wang P R, Zhang G L, Chen W R, Zhang B B, Wang X L. Concurrent photothermal therapy and photodynamic therapy for cutaneous squamous cell carcinoma by gold nanoclusters under a single NIR laser irradiation[J]. J. Mater. Chem. B, 2019,7(44):6924-6933. doi: 10.1039/C9TB01573F
Aiai WANG , Lu ZHAO , Yunfeng BAI , Feng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225
Jiahui CHEN , Tingting ZHENG , Xiuyun ZHANG , Wei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106
Lubing Qin , Fang Sun , Meiyin Li , Hao Fan , Likai Wang , Qing Tang , Chundong Wang , Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008
Wenjing ZHANG , Xiaoqing WANG , Zhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254
Jing WU , Puzhen HUI , Huilin ZHENG , Pingchuan YUAN , Chunfei WANG , Hui WANG , Xiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278
Di WU , Ruimeng SHI , Zhaoyang WANG , Yuehua SHI , Fan YANG , Leyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135
Zhuoya WANG , Le HE , Zhiquan LIN , Yingxi WANG , Ling LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194
Yanting HUANG , Hua XIANG , Mei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196
Xin Lv , Hongxing Zhang , Kaibo Duan , Wenhui Dai , Zhihui Wen , Wei Guo , Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090
Peng ZHOU , Xiao CAI , Qingxiang MA , Xu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047
Peng GENG , Guangcan XIANG , Wen ZHANG , Haichuang LAN , Shuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155
Ping Song , Nan Zhang , Jie Wang , Rui Yan , Zhiqiang Wang , Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087
Fei Xie , Chengcheng Yuan , Haiyan Tan , Alireza Z. Moshfegh , Bicheng Zhu , Jiaguo Yu . d带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013
Chunmei GUO , Weihan YIN , Jingyi SHI , Jianhang ZHAO , Ying CHEN , Quli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162
Xiaxue Chen , Yuxuan Yang , Ruolin Yang , Yizhu Wang , Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019
Yingran Liang , Fei Wang , Jiabao Sun , Hongtao Zheng , Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024
Guimin ZHANG , Wenjuan MA , Wenqiang DING , Zhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293
Guoxian Zhu , Jing Chen , Rongkai Pan . Enhancing the Teaching Quality of Atomic Structure: Insights and Strategies. University Chemistry, 2024, 39(3): 376-383. doi: 10.3866/PKU.DXHX202305027
Jin Jia , Shangda Jiang . Is the z Axis Special in Atomic Structure?. University Chemistry, 2024, 39(6): 400-404. doi: 10.12461/PKU.DXHX202403091
Linhan Tian , Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056