Citation: Linjie ZHU, Xufeng LIU. Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands[J]. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207
双膦配体桥联的四铁配合物的电催化产氢性能
English
Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands
-
人们对化石能源的广泛开采和利用造成了一系列的环境污染等问题,由此影响到人类的可持续发展。为此,科学家们开展了广泛的研究工作,试图找到一种清洁能源来替代传统的化石能源。其中,氢能具有许多优势,例如燃烧热值高,燃烧后生成的产物(水)不仅对环境无污染还可以循环使用等,因此越来越受到研究者们的关注[1-3]。利用催化剂将水中的质子还原产生氢气成为当下的热门研究课题[4-6]。众所周知,虽然钯、铂等贵金属催化剂产氢效率很高,但其价格昂贵、自然界含量稀少,不适合开展大规模制取氢气。因此,开发高效率产氢的廉价金属催化剂成为一大热点[7-10]。
在自然界中,氢化酶是一类可以催化质子还原产生氢气及其逆反应(氢气氧化生成质子)的生物酶[11]。根据所含金属分为铁铁氢化酶、镍铁氢化酶和铁氢化酶[12]。而铁铁氢化酶催化质子还原产氢的效率是最高的,可达6 000~9 000 s-1 [13]。铁铁氢化酶的活性中心含有2个铁原子以及氮杂丙撑双硫桥、羰基、氰根等配体[14-15]。为了实现高效率催化产氢的目的,人们合成了数量众多的二铁二硫类似物来模拟铁铁氢化酶活性中心的结构[16-20],然而结果尚不能如意。双膦配体取代六羰基二铁二硫配合物往往能得到3种配位模式:分子间桥联型、分子内桥联型和螯合型[21]。本研究中,我们选择了2个双膦配体[直线型配体双(二苯基膦)乙炔(dppa)和折线型配体trans-1,2-双(二苯基膦)乙烯(trans-dppv)]来取代六羰基二铁二硫配合物[Fe2(CO)6(μ-SCH2CH(CH3)S)]中的一个羰基,以此合成了2个分子间桥联的四铁配合物[Fe4(CO)10(μ-SCH2CH(CH3)S)2(dppa)] (1)和[Fe4(CO)10(μ-SCH2CH(CH3)S)2(trans-dppv)] (2)。用元素分析、红外光谱、核磁共振氢谱和磷谱对其结构进行了表征,进一步得到了单晶X射线衍射的确证,并且研究了这2个配合物的电化学性质以及电催化质子还原产生氢气的性能。
1. 实验部分
1.1 试剂与仪器
所有化学试剂均为市售分析纯,未经纯化直接使用。配合物[Fe2(CO)6(μ-SCH2CH(CH3)S)]根据文献[22]方法合成。
红外光谱由岛津IRAffinity-1S光谱仪测定,核磁共振波谱由布鲁克Avance测定(500 MHz),元素分析由Elementar Vario EL Cube进行,X射线光电子能谱(XPS)由赛默飞世尔ESCALAB 250Xi测定。循环伏安(CV)曲线由辰华CHI 660E电化学工作站测定。
1.2 合成
1.2.1 配合物1的合成
将配合物[Fe2(CO)6(μ-SCH2CH(CH3)S)](39 mg,0.10 mmol)和dppa(20 mg,0.050 mmol)溶解在二氯甲烷(5 mL)溶液中,随后缓慢滴入含有Me3NO·2H2O(11 mg,0.10 mmol)的乙腈(5 mL)溶液,溶液颜色随即由红色转变为棕黑色,在室温下搅拌1 h。将溶剂用旋转蒸发仪蒸干后得到棕色固体,进行薄层色谱分离,收集红色主色带得到配合物1(42 mg,产率76%)。FTIR(CH2Cl2,cm-1):2 049(vs),1 992(vs),1 967(m),1 943(m)。1H NMR(500 MHz, CDCl3):δ 7.87~7.79(m,4H),7.46(s,6H),2.37~2.24(m,1H),1.35~1.29(m,1H),1.03~1.01(m,3H),0.88(m,1H)。31P NMR(200 MHz,CDCl3):δ 36.01(s)。元素分析(C42H32Fe4O10P2S4)理论值(%):C 45.44,H 2.91;实测值(%):C 45.62,H 3.00。
1.2.2 配合物2的合成
合成步骤与配合物1相似,将dppa替换为trans-dppv(20 mg,0.050 mmol),得到20 mg配合物2(产率36%)。FTIR(CH2Cl2,cm-1):2 045(vs),1 987(vs),1 933(m)。1H NMR(500 MHz,CDCl3):δ 7.66~7.54(m,8H),7.48, 7.47(2s, 12H), 6.84~6.70(m, 1H), 6.63~6.44(m,1H), 2.60~2.54(m, 1H), 2.39~2.33(m, 1H),1.28~1.24(m,2H),1.07~1.00(m,6H),0.93~0.89(m,2H)。31P NMR(200 MHz,CDCl3):δ 58.46(s)。元素分析(C42H34Fe4O10P2S4)理论值(%):C 45.35,H 3.08;实测值(%):C 45.08,H 3.25。
1.3 晶体结构测试
晶体衍射数据是在室温条件(296 K)下用石墨单色化的Mo Kα射线(λ=0.071 073 nm)经ω-φ扫描获得。在OLEX2平台上调用SHELXS解得初结构,再调用SHELXL程序对所有非氢原子及其各向异性温度因子进行基于F2的全矩阵最小二乘法精修。氢原子坐标则用理论加氢法确定并用跨式(riding model)模型进行各向同性精修。晶体数据和各项参数列于表 1。
表 1
Parameter 1 2 Empirical formula C42H32Fe4O10P2S4 C42H34Fe4O10P2S4 Formula weight 1 110.25 1 112.27 Crystal system Triclinic Monoclinic Space group P1 P21/c a / nm 1.006 8(3) 0.948 10(7) b / nm 1.013 2(3) 1.767 06(11) c / nm 1.269 3(4) 1.384 57(9) α / (°) 70.034(9) β / (°) 81.113(10) 90.339(2) γ / (°) 74.723(9) V / nm3 1.171 0(6) 2.319 6(3) Z 1 2 Dc / (g·cm-3) 1.574 1.592 μ / mm-1 1.515 1.529 F(000) 562 1 128.0 Crystal size / mm 0.22×0.16×0.12 0.28×0.26×0.2 2θ range / (°) 5.348-50.008 4.876-50.184 h, k, l range -11 ≤ h ≤ 11, -12 ≤ k ≤ 11, -15 ≤ l ≤ 15 -11 ≤ h ≤ 11, -21 ≤ k ≤ 21, -16 ≤ l ≤ 16 Reflection collected 11 650 48 005 Independent reflection 4 082 (Rint=0.034 9) 4 094 (Rint=0.043 4) Observed reflection [I > 2σ(I)] 2 365 3 621 Data, restraint, number of parameters 4 082, 12, 281 4 094, 6, 281 Goodness of fit on F2 1.056 1.270 Final R indexes [I > 2σ(I)] R1=0.063 0, wR2=0.165 2 R1=0.068 7, wR2=0.151 7 Final R indexes (all data) R1=0.119 4, wR2=0.191 4 R1=0.075 9, wR2=0.154 7 Largest diff. peak and hole / (e·nm-3) 670 and -357 690 and -557 2. 结果与讨论
2.1 合成与谱学表征
在温和条件下,利用试剂Me3NO·2H2O的脱羰功能,使六羰基配合物[(Fe2(CO)6(μ-SCH2CH(CH3)S)]失去一分子的CO,再与0.5倍的双膦配体dppa或trans-dppv配位,成功合成了2例双膦配体桥联的四铁配合物1和2。配合物1和2的结构经元素分析、红外光谱和核磁共振波谱表征。在红外光谱中,配合物1和2的羰基伸缩振动最高吸收峰分别位于2 049和2 045 cm-1,与六羰基配合物[(Fe2(CO)6(μ-SCH2CH(CH3)S)](2 076 cm-1)[22]相比明显地向低波数移动,这是由于膦配体的给电子能力强于CO的结果[23-24]。另外,羰基伸缩振动最高吸收峰与单取代的二铁配合物接近[25-26],而要大于分子内桥联[27-28]或螯合[29-30]的二铁配合物。在1H NMR谱图中,配合物1和2在δ=7.87~7.46和δ=7.66~7.47处有多组峰,归属于苯环上的质子,配合物2中位于δ=6.84~6.44处有2组多重峰,则归属于C=C上的氢。在31P NMR中,配合物1和2分别在δ=36.01和58.46处有一个单峰,此为与Fe原子配位的磷原子的信号,其数值大小与含膦二铁配合物相似[31-33]。
2.2 晶体结构
我们用单晶X射线衍射对2个配合物的结构进行了表征。分子结构如图 1所示,部分键长和键角列于表 2中。与大部分分子间桥联的四铁配合物相同[34-36],配合物1和2的晶体结构呈现中心对称,以C≡C或C=C的中点作为中心对称点。如图 1中所示,每个二铁二硫单元均含有2个中心铁原子以及1,2-丙撑双硫桥配体,5个羰基和1个二苯基膦配体。P1原子处于其配位的Fe2原子扭曲八面体的顶点位置,与大部分单取代二铁配合物完全一致[37-38]。所不同的是,配合物1的Fe1—Fe2键长[0.250 81(16) nm]要稍短于六羰基配合物[Fe2(CO)6(μ-SCH2CH(CH3)S)][0.251 96(7) nm][22],而配合物2的Fe1—Fe2键长[0.252 12(14) nm]则要稍长于配合物[Fe2(CO)6(μ-SCH2CH(CH3)S)],这可能是由于2个双膦配体不同的电子效应造成的。另外,2个配合物的Fe1—Fe2键长均要明显短于天然氢化酶(0.255~0.262 nm)[14-15]。正是由于dppa配体是直线型而trans-dppv是折线型,使得配合物1中Fe2与Fe2A之间距离(0.768 8 nm)要大于配合物2(0.713 3 nm)。
图 1
表 2
Bond 1 2 Fe1—Fe2 0.250 81(16) 0.252 12(14) Fe1—S1 0.224 6(2) 0.225 3(2) Fe1—S2 0.225 8(2) 0.225 0(2) Fe2—S1 0.224 0(2) 0.224 6(2) Fe2—S2 0.223 67(19) 0.224 6(2) Fe2—P1 0.221 8(2) 0.222 19(19) S1—Fe1—Fe2 55.91(6) 55.79(6) S1—Fe1—S2 79.53(8) 79.55(8) S2—Fe1—Fe2 55.68(6) 55.83(6) S1—Fe2—Fe1 56.10(6) 56.04(6) S2—Fe2—Fe1 56.49(7) 55.96(6) S2—Fe2—S1 80.10(8) 79.77(8) P1—Fe2—Fe1 152.84(6) 152.12(7) Fe1—S1—Fe2 67.99(7) 68.17(7) Fe2—S2—Fe1 67.83(6) 68.21(6) 2.3 电化学性质
首先,为了确定配合物中金属Fe的氧化态,我们用XPS对配合物2进行了表征。如图 2中所示,在708.0和720.8 eV有2个峰属于金属Fe2p轨道的电离,参考相关文献[39-40]对此类铁硫配合物XPS谱图的解析,可以确定配合物中金属Fe的氧化态为+1。其中位于708.0 eV的峰对应Fe的2p1/2轨道的电离,而位于720.8 eV的峰对应Fe的2p3/2轨道的电离。接下来,我们用CV技术研究了配合物的电化学性质。如图 3a中所示,配合物1的CV曲线显示在-1.83和-2.22 V各有一个不可逆的还原峰,参考文献[41]对还原峰的指认,我们将2个还原峰分别对应为FeⅠFeⅠ+e→FeⅠFe0和FeⅠFe0+e→Fe0Fe0。其中,与六羰基配合物[(Fe2(CO)6(μ-SCH2CH(CH3)S)][42]相比,配合物1的第一个还原峰向负方向移动了0.174 V,这与红外光谱中观察到的现象一致,可以解释为膦配体的给电子能力强于CO,增强了Fe原子的电子云密度,使其得到电子更加困难。如图 3b所示,配合物2的CV曲线与配合物1完全类似,只是其2个还原峰分别位于-1.90和-2.14 V。通过比较两者的第一个还原峰,配合物2的峰电位更低,反映出trans-dppv给电子能力要稍强于dppa。配合物1和2分别在0.55和0.48 V有一个不可逆的氧化峰,根据文献[41]对氧化峰的指认,我们将此氧化峰对应为FeⅠFeⅠ-e→FeⅠFeⅡ。该氧化峰的电位与六羰基配合物[Fe2(CO)6(μ-SCH2CH2CH2S)](0.74 V)[42]相比,向负方向移动了0.19~0.26 V,与在还原峰上观察到的现象一致。
图 2
图 3
2.4 电催化产氢
以醋酸作为质子源加入到乙腈溶液中,根据CV曲线得到的还原峰的电位和电流可以判断出铁硫配合物催化质子还原产生氢气的性能。如图 4a中所示,持续不断地增加溶液中醋酸的浓度,位于-1.83 V的第一个还原峰发生了轻微的负移,同时其电流强度发生了升高,但随着酸浓度递增,电流增幅不是太明显。与之不同的是,位于-2.22 V的第二个还原峰的电流强度随着酸浓度递增而剧烈的升高,并且电流强度与酸浓度呈现一定的线性关系(图 5),同时与醋酸空白[33]相比,电位发生了正移以及电流强度发生了升高,由此可以判断出配合物1电催化产氢的性能[43-47]。如图 4b和5中所示,配合物2的循环伏安加醋酸后情况与配合物1类似,只是催化电位和催化电流发生了改变。
图 4
图 5
为了衡量这2个配合物的催化效率,我们参考已报道的计算公式[10],得到了转换频率(TOF)与醋酸浓度的关系图(图 6)。在图 6中非常清晰地看到配合物2的斜率要大于配合物1,由此可以推断出配合物2的TOF要大于配合物1,即配合物2的催化效率更高。
图 6
结合以上电化学表现及相关文献[48-49],推测出配合物电催化产氢的EECC机理(E:得电子,C:结合质子)。配合物在第一个还原峰得到一个电子生成一价负离子,由于醋酸的酸性不足以使该负离子结合质子,因此在第二个还原峰继续得到一个电子生成二价负离子。此时负离子电子密度增加到足够能结合质子,其再结合一个质子产生氢气,完成一个催化循环。
3. 结论
在脱羰试剂的协助下,由六羰基二铁配合物[Fe2(CO)6(μ-SCH2CH(CH3)S)]和双膦配体合成了2个新配合物[Fe4(CO)10(μ-SCH2CH(CH3)S)2(dppa)] (1)和[Fe4(CO)10(μ-SCH2CH(CH3)S)2(trans-dppv)] (2)。循环伏安研究表明配合物1和2均可以催化醋酸中的质子还原产生氢气。本研究工作对于开发更高效率的廉价金属产氢催化剂提供了一定的理论和实践依据,从而为实现利用清洁能源减少环境污染做出了一定的贡献。
-
-
[1]
ESSWEIN A J, NOCERA D G. Hydrogen production by molecular photocatalysis[J]. Chem. Rev., 2007, 107(10): 4022-4047. doi: 10.1021/cr050193e
-
[2]
DU P W, EISENBERG R. Catalysts made of earth-abundant elements (Co, Ni, Fe) for water splitting: Recent progress and future challenges[J]. Energy Environ. Sci., 2012, 5(3): 6012-6021. doi: 10.1039/c2ee03250c
-
[3]
ZHANG W, XU R. Hybrid photocatalytic H2 evolution systems containing xanthene dyes and inorganic nickel based catalysts[J]. Int. J. Hydrogen Energ., 2012, 37(23): 17899-17909. doi: 10.1016/j.ijhydene.2012.08.150
-
[4]
LV H J, RUBERU T P A, FLEISCHAUER V E, BRENNESSEL W W, NEIDIG M L, EISENBERG R. Catalytic light-driven generation of hydrogen from water by iron dithiolene complexes[J]. J. Am. Chem. Soc., 2016, 138(36): 11654-11663. doi: 10.1021/jacs.6b05040
-
[5]
LI G C, MARK M F, LV H J, McCAMANT D W, EISENBERG R. Rhodamine-platinum diimine dithiolate complex dyads as efficient and robust photosensitizers for light-driven aqueous proton reduction to hydrogen[J]. J. Am. Chem. Soc., 2018, 140(7): 2575-2586. doi: 10.1021/jacs.7b11581
-
[6]
DU P W, KNOWLES K, EISENBERG R. A homogeneous system for the photogeneration of hydrogen from water based on a platinum (Ⅱ) terpyridyl acetylide chromophore and a molecular cobalt catalyst[J]. J. Am. Chem. Soc., 2008, 130(38): 12576-12577. doi: 10.1021/ja804650g
-
[7]
LAZARIDES T, McCORMICK T, DU P W, LUO G G, LINDLEY B, EISENBERG R. Making hydrogen from water using a homogeneous system without noble metals[J]. J. Am. Chem. Soc., 2009, 131(26): 9192-9194. doi: 10.1021/ja903044n
-
[8]
CAO M, LIU R H, WANG D W, WANG Z X, YANG L F, LIU Y, XU S, CUI J L, ZHANG S X, DAI X. Synthesis and photocatalytic activity of two different hydrogenase models based on DMAEMA copolymer structure[J]. Inorg. Chim. Acta, 2023, 546: 121293. doi: 10.1016/j.ica.2022.121293
-
[9]
HAN Z J, QIU F, EISENBERG R, HOLLAND P L, KRAUSS T D. Robust photogeneration of H2 in water using semiconductor nanocrys-tals and a nickel catalyst[J]. Science, 2012, 338(6112): 1321-1324. doi: 10.1126/science.1227775
-
[10]
HELM M L, STEWART M P, BULLOCK R M, DUBOIS M R, DUBOIS D L. A synthetic nickel electrocatalyst with a turnover frequency above 100, 000 s-1 for H2 production[J]. Science, 2011, 333(6044): 863-866. doi: 10.1126/science.1205864
-
[11]
LUBITZ W, OGATA H, RÜDIGER O, REIJERSE E. Hydrogenases[J]. Chem. Rev., 2014, 114(8): 4081-4148. doi: 10.1021/cr4005814
-
[12]
TARD C, PICKETT C J. Structural and functional analogues of the active sites of the[Fe]-, [NiFe]-, and[FeFe]-hydrogenases[J]. Chem. Rev., 2009, 109(6): 2245-2274. doi: 10.1021/cr800542q
-
[13]
FREY M. Hydrogenases: Hydrogen-activating enzymes[J]. ChemBio-Chem, 2002, 3(2-3): 153-160. doi: 10.1002/1439-7633(20020301)3:2/3<153::AID-CBIC153>3.0.CO;2-B
-
[14]
PETERS J W, LANZILOTTA W N, LEMON B J, SEEFELDT L C. X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium Pasteurianum to 1.8 angstrom resolution[J]. Science, 1998, 282(5395): 1853-1858. doi: 10.1126/science.282.5395.1853
-
[15]
NICOLET Y, PIRAS C, LEGRAND P, HATCHIKIAN C E, FONTECILLA-CAMPS J C. Desulfovibrio Desulfuricans iron hydrogenase: The structure shows unusual coordination to an active site Fe binuclear center[J]. Structure, 1999, 7(1): 13-23. doi: 10.1016/S0969-2126(99)80005-7
-
[16]
LYON E J, GEORGAKAKI I P, REIBENSPIES J H, DARENSBOURG M Y. Carbon monoxide and cyanide ligands in a classical organome-tallic complex model for Fe-only hydrogenase[J]. Angew. Chem.-Int. Edit., 1999, 38(21): 3178-3180. doi: 10.1002/(SICI)1521-3773(19991102)38:21<3178::AID-ANIE3178>3.0.CO;2-4
-
[17]
LAWRENCE J D, LI H X, RAUCHFUSS T B, BÉNARD M, ROHMER M M. Diiron azadithiolates as models for the iron-only hydrogenase active site: Synthesis, structure, and stereoelectronics[J]. Angew. Chem.-Int. Edit., 2001, 40(9): 1768-1771. doi: 10.1002/1521-3773(20010504)40:9<1768::AID-ANIE17680>3.0.CO;2-E
-
[18]
GEORGE S J, CUI Z, RAZAVET M, PICKETT C J. The di-iron subsite of all-iron hydrogenase: mechanism of cyanation of a synthetic{2Fe3S}-carbonyl assembly[J]. Chem.-Eur. J., 2002, 8(17): 4037-4046. doi: 10.1002/1521-3765(20020902)8:17<4037::AID-CHEM4037>3.0.CO;2-O
-
[19]
JIANG S, LIU J H, SHI Y, WANG Z, ÅKERMARK B, SUM L C. Fe-S complexes containing five-membered heterocycles: Novel models for the active site of hydrogenases with unusual low reduction potential[J]. Dalton Trans., 2007, : 896-902.
-
[20]
HOGARTH G. An unexpected leading role for[Fe2(CO)6(μ-pdt)] in our understanding of[FeFe]-H2ases and the search for clean hydrogen production[J]. Coord. Chem. Rev., 2023, 490: 215174. doi: 10.1016/j.ccr.2023.215174
-
[21]
GAO W M, EKSTRÖM J, LIU J H, CHEN C N, ERIKSSON L, WENG L H, ÅKERMARK B, SUN L C. Binuclear iron-sulfur complexes with bidentate phosphine ligands as active site models of Fe-hydrogenase and their catalytic proton reduction[J]. Inorg. Chem., 2007, 46(6): 1981-1991. doi: 10.1021/ic0610278
-
[22]
ZHANG Q Q, DICKSON R S, FALLON G D, MAYADUNNE R. A comparison of the reactions of pentacarbonyliron with cyclic thioethers and related dialkyl sulfides[J]. J. Organomet. Chem., 2001, 627(2): 201-205. doi: 10.1016/S0022-328X(01)00733-1
-
[23]
CHEN F Y, HE J, YU X Y, WANG Z, MU C, LIU X F, LI Y L, JIANG Z Q, WU H K. Electrocatalytic properties of diiron ethanedi-thiolate complexes containing benzoate ester[J]. Appl. Organomet. Chem., 2018, 32(12): e4549. doi: 10.1002/aoc.4549
-
[24]
BAI S F, MA J W, GUO Y N, DU X M, WANG Y L, LI Q L, LÜ S. Aminophosphine-substituted Fe/E (E=S, Se) carbonyls related to[FeFe]-hydrogenases: Synthesis, protonation, and electrocatalytic proton reduction[J]. J. Mol. Struct., 2023, 1283: 135287. doi: 10.1016/j.molstruc.2023.135287
-
[25]
YAN L, HU K, LIU X F, LI Y L, LIU X H, JIANG Z Q. Diiron ethane-1, 2-dithiolate complexes with 1, 2, 3-thiadiazole moiety: Synthesis, X-ray crystal structures, electrochemistry and fungicidal activity[J]. Appl. Organomet. Chem., 2021, 35(2): e6084. doi: 10.1002/aoc.6084
-
[26]
刘旭锋, 徐博, 徐航, 李玉龙. 含膦配体二铁二硫五羰基配合物的合成、表征及电催化产氢性能[J]. 无机化学学报, 2023,39,(8): 1619-1627. LIU X F, XU B, XU H, LI Y L. Synthesis, characterization, and electrocatalytic hydrogen evolution of diiron dithiolato pentacarbonyl complexes bearing phosphine ligand[J]. Chinese J. Inorg. Chem., 2023, 39(8): 1619-1627.
-
[27]
ORTAN G R F, GHOSH S, ALKER L, SARKER J C, PUGH D, RICHMOND M G, HARTL F, HOGARTH G. Biomimics of[FeFe]-hydrogenases incorporating redox-active ligands: Synthesis, redox properties and spectroelectrochemistry of diiron-dithiolate complexes with ferrocenyl-diphosphines as Fe4S4 surrogates[J]. Dalton Trans., 2022, 51(25): 9748-9769. doi: 10.1039/D2DT00419D
-
[28]
ZHAO P H, MA Z Y, HU M Y, HE J, WANG Y Z, JING X B, CHEN H Y, LI Y L. PNP-Chelated and-bridged diiron dithiolate complexes Fe2(μ-pdt)(CO)4{(Ph2P)2NR} together with related monophosphine complexes for the[2Fe]H subsite of[FeFe]-hydrogenases: preparation, structure, and electrocatalysis[J]. Organometallics, 2018, 37(8): 1280-1290. doi: 10.1021/acs.organomet.8b00030
-
[29]
ZHAO P H, HU M Y, LI J R, MA Z Y, WANG Y Z, HE J, LI Y L, LIU X F. Influence of dithiolate bridges on the structures and electrocatalytic performance of small bite-angle PNP-chelated diiron complexes Fe2(μ-xdt)(CO)4{κ2-(Ph2P)2NR} related to[FeFe]-hydroge-nases[J]. Organometallics, 2019, 38(2): 385-394. doi: 10.1021/acs.organomet.8b00759
-
[30]
刘旭锋, 徐博, 徐航, 李玉龙. 膦配体取代的乙基乙撑双铁配合物的合成、晶体结构及电化学催化性能[J]. 无机化学学报, 2022,38,(12): 2521-2529. doi: 10.11862/CJIC.2022.245LIU X F, XU B, XU H, LI Y L. Diiron butane-1, 2-dithiolate complexes with phosphine ligands: preparation, crystal structures, and electrochemical catalytic performance[J]. Chinese J. Inorg. Chem., 2022, 38(12): 2521-2529. doi: 10.11862/CJIC.2022.245
-
[31]
LIU X F, WANG S J, ZHAO P H. Di-iron dithiolato complexes with 3-bromothiophene moiety: Preparation, structures, and electrochemistry[J]. J. Mol. Struct., 2023, 1294: 136454. doi: 10.1016/j.molstruc.2023.136454
-
[32]
BAI S F, DU X M, TIAN W J, XU H, ZHANG R F, MA C L, WANG Y L, LÜ S, LI Q L, LI Y L. Di-, tri-and tetraphosphine-substituted Fe/Se carbonyls: Synthesis, characterization and electrochemical properties[J]. Dalton Trans., 2022, 51(29): 11125-11134. doi: 10.1039/D2DT01376B
-
[33]
YAN L, YANG J, LÜ S, LIU X F, LI Y L, LIU X H, JIANG Z Q. Phosphine-containing diiron propane-1, 2-dithiolate derivatives: Synthesis, spectroscopy, X-ray crystal structures, and electrochemistry[J]. Catal. Lett., 2021, 151(7): 1857-1867. doi: 10.1007/s10562-020-03450-2
-
[34]
LIU X F, YIN B S. Synthesis and structural characterization of diiron propanedithiolate complex[(μ-PDT) Fe2(CO)5]2[(η5-Ph2PC5H4)2Fe] containing a bidentate phosphine ligand 1, 1'-bis (diphenylphosphino) ferrocene[J]. J. Coord. Chem., 2010, 63(23): 4061-4067. doi: 10.1080/00958972.2010.531715
-
[35]
LIU X F, JIANG Z Q, JIA Z J. Synthesis, characterization and crystal structures of tetrairon ethanedithiolate complexes containing bridging bidentate phosphine ligands[J]. Polyhedron, 2012, 33(1): 166-170. doi: 10.1016/j.poly.2011.11.032
-
[36]
LIU X F. Synthesis and structures of diiron dithiolate complexes with 1, 2-bis (diphenylphosphino) acetylene or tris (2-methoxyphenyl) phosphine[J]. Polyhedron, 2016, 117: 672-678. doi: 10.1016/j.poly.2016.07.009
-
[37]
LI R X, LIU X F, LIU T, YIN Y B, ZOU Y, MEI S K, YAN J. Electrocatalytic properties of[FeFe]-hydrogenases models and visible-light-driven hydrogen evolution efficiency promotion with porphyrin functionalized graphene nanocomposite[J]. Electrochim. Acta, 2017, 237: 207-216. doi: 10.1016/j.electacta.2017.03.216
-
[38]
JIN B, TAN X, ZHANG X X, WANG Z Y, QU Y P, HE Y B, HU T P, ZHAO P H. Substituent effects in carbon-nanotube-supported diiron monophosphine complexes for hydrogen evolution reaction[J]. Electrochim. Acta, 2022, 434: 141325. doi: 10.1016/j.electacta.2022.141325
-
[39]
DEY S, RANA A, DEY S G, DEY A. Electrochemical hydrogen production in acidic water by an azadithiolate bridged synthetic hydro-genese mimic: Role of aqueous solvation in lowering overpotential[J]. ACS Catal., 2013, 3(3): 429-436. doi: 10.1021/cs300835a
-
[40]
AHMED M E, DEY S, MONDAL B, DEY A. H2 evolution catalyzed by a FeFe-hydrogenase synthetic model covalently attached to graphite surfaces[J]. Chem. Commun., 2017, 53(58): 8188-8191. doi: 10.1039/C7CC04281G
-
[41]
CHONG D, GEORGAKAKI I P, MEJIA-RODRIGUEZ R, SANABRIA-CHINCHILLA J, SORIAGA M P, DARENSBOURG M Y. Electrocatalysis of hydrogen production by active site analogues of the iron hydrogenase enzyme: Structure/function relationships[J]. Dalton Trans., 2003, 4158-4163: .
-
[42]
DONOVAN E S, NICHOL G S, FELTON G A N. Structural effects upon the durability of hydrogenase-inspired hydrogen-producing electrocatalysts: Variations in the (μ-edt)[Fe2(CO)6] system[J]. J. Organomet. Chem., 2013, 726: 9-13. doi: 10.1016/j.jorganchem.2012.12.006
-
[43]
GLOAGUEN F, LAWRENCE J D, RAUCHFUSS T B. Biomimetic hydrogen evolution catalyzed by an iron carbonyl thiolate[J]. J. Am. Chem. Soc., 2001, 123(38): 9476-9477. doi: 10.1021/ja016516f
-
[44]
LÜ S, BAI S F, GAO X P, WANG Y L, LI Q L. Aminodiphosphine substituted 2Fe2Se complex as new precursor to single and double butterfly Fe/Se models related to FeFe hydrogenase models[J]. J. Mol. Struct., 2023, 1290: 135939. doi: 10.1016/j.molstruc.2023.135939
-
[45]
LI Z M, XIAO Z Y, XU F F, ZENG X H, LIU X M. Enhancement in catalytic proton reduction by an internal base in a diiron pentacarbonyl complex: Its synthesis, characterisation, interconversion and electrochemical investigation[J]. Dalton Trans., 2017, 46(6): 1864-1871. doi: 10.1039/C6DT04409C
-
[46]
ZHONG W, WU L, JIANG W D, LI Y L, MOOKAN N, LIU X M. Proton-coupled electron transfer in the reduction of diiron hexacarbonyl complexes and its enhancement on the electrocatalytic reduction of protons by a pendant basic group[J]. Dalton Trans., 2019, 48(36): 13711-13718. doi: 10.1039/C9DT02058F
-
[47]
XIAO Z Y, ZHONG W, LIU X M. Recent developments in electrochemical investigations into iron carbonyl complexes relevant to the iron centres of hydrogenases[J]. Dalton Trans., 2022, 51(1): 40-47. doi: 10.1039/D1DT02705K
-
[48]
刘旭锋, 李玉龙, 刘幸海. 含异恶唑二铁配合物的合成、表征及电催化产氢性能和抗菌活性[J]. 无机化学学报, 2023,39,(12): 2367-2376. doi: 10.11862/CJIC.2023.204LIU X F, LI Y L, LIU X H. Synthesis, characterization, electrocata-lytic properties, and antifungal activity of isoxazole-containing di-iron complexes[J]. Chinese J. Inorg. Chem., 2023, 39(12): 2367-2376. doi: 10.11862/CJIC.2023.204
-
[49]
LIU X F, LI Y L, LIU X H. Heterocyclic pyrazole-containing diiron dithiolato analogues: Synthesis, characterization, electrochemistry, and fungicidal activity[J]. Appl. Organomet. Chem., 2022, 36(11): e6884. doi: 10.1002/aoc.6884
-
[1]
-
表 1 配合物1和2的晶体学数据和结构精修参数
Table 1. Crystal data and structure refinement parameters for complexes 1 and 2
Parameter 1 2 Empirical formula C42H32Fe4O10P2S4 C42H34Fe4O10P2S4 Formula weight 1 110.25 1 112.27 Crystal system Triclinic Monoclinic Space group P1 P21/c a / nm 1.006 8(3) 0.948 10(7) b / nm 1.013 2(3) 1.767 06(11) c / nm 1.269 3(4) 1.384 57(9) α / (°) 70.034(9) β / (°) 81.113(10) 90.339(2) γ / (°) 74.723(9) V / nm3 1.171 0(6) 2.319 6(3) Z 1 2 Dc / (g·cm-3) 1.574 1.592 μ / mm-1 1.515 1.529 F(000) 562 1 128.0 Crystal size / mm 0.22×0.16×0.12 0.28×0.26×0.2 2θ range / (°) 5.348-50.008 4.876-50.184 h, k, l range -11 ≤ h ≤ 11, -12 ≤ k ≤ 11, -15 ≤ l ≤ 15 -11 ≤ h ≤ 11, -21 ≤ k ≤ 21, -16 ≤ l ≤ 16 Reflection collected 11 650 48 005 Independent reflection 4 082 (Rint=0.034 9) 4 094 (Rint=0.043 4) Observed reflection [I > 2σ(I)] 2 365 3 621 Data, restraint, number of parameters 4 082, 12, 281 4 094, 6, 281 Goodness of fit on F2 1.056 1.270 Final R indexes [I > 2σ(I)] R1=0.063 0, wR2=0.165 2 R1=0.068 7, wR2=0.151 7 Final R indexes (all data) R1=0.119 4, wR2=0.191 4 R1=0.075 9, wR2=0.154 7 Largest diff. peak and hole / (e·nm-3) 670 and -357 690 and -557 表 2 配合物1和2的部分键长(nm)和键角(°)
Table 2. Selected bond lengths (nm) and angles (°) for complexes 1 and 2
Bond 1 2 Fe1—Fe2 0.250 81(16) 0.252 12(14) Fe1—S1 0.224 6(2) 0.225 3(2) Fe1—S2 0.225 8(2) 0.225 0(2) Fe2—S1 0.224 0(2) 0.224 6(2) Fe2—S2 0.223 67(19) 0.224 6(2) Fe2—P1 0.221 8(2) 0.222 19(19) S1—Fe1—Fe2 55.91(6) 55.79(6) S1—Fe1—S2 79.53(8) 79.55(8) S2—Fe1—Fe2 55.68(6) 55.83(6) S1—Fe2—Fe1 56.10(6) 56.04(6) S2—Fe2—Fe1 56.49(7) 55.96(6) S2—Fe2—S1 80.10(8) 79.77(8) P1—Fe2—Fe1 152.84(6) 152.12(7) Fe1—S1—Fe2 67.99(7) 68.17(7) Fe2—S2—Fe1 67.83(6) 68.21(6)
计量
- PDF下载量: 0
- 文章访问数: 5
- HTML全文浏览量: 1