Citation: Lisha LEI, Wei YONG, Yiting CHENG, Yibo WANG, Wenchao HUANG, Junhuan ZHAO, Zhongjie ZHAI, Yangbin DING. Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202 shu

Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries

  • Corresponding author: Yangbin DING, 02566@zjhu.edu.cn
  • Received Date: 30 May 2024
    Revised Date: 11 April 2025

Figures(9)

  • A green composite film (RCewp/rGO) made from regenerated waste paper cellulose (RCewp) and reduced graphene oxide (rGO) was designed and used as an active material. The film produced from recycled paper demonstrated a stable maximum peak current of 10 μA over a 7 000 s cycle, with a maximum output power of 2.34 μW·cm-2 at a 100 Ω load. Additionally, the research highlighted the significant impact of metallic current collectors on moisture electricity generation. Notably, stainless steel collectors can produce an open-circuit voltage of up to 53 mV at 70% relative humidity (RH), as the redox reactions at the collector enhance current and voltage output under humid conditions. Furthermore, this moisture electricity generation film exhibited excellent performance when combined with magnesium-air batteries: at a 50% of RH, the RCewp/rGO electrode could generate an open-circuit voltage (Voc) of up to 1.37 V and a short-circuit current density of 0.132 mA·cm-2. When the RH increased to 90%, the Voc further rose to 1.57 V, with a short-circuit current density of 64.2 mA·cm-2. In contrast, the Mg-filter paper-Ni electrode, which was not connected to the moisture electricity generation film, only produced an output power and short-circuit current of 3.76×10-4 mW and 0.306 μA·cm-2, respectively.
  • 加载中
    1. [1]

      LIU X M, GAO H Y, WARD J E, LIU X R, YIN B, FU T D, CHEN J H, LOVLEY D R, YAO J. Power generation from ambient humidity using protein nanowires[J]. Nature, 2020,578(7796):550-554. doi: 10.1038/s41586-020-2010-9

    2. [2]

      WANG H Y, HE T C, HUANG Y X, CHENG H H, LI C, QU L T, SUN Y L, XIE D, YANG P F, ZHANG Y F. Bilayer of polyelectrolyte films for spontaneous power generation in air up to an integrated 1000 V output[J]. Nat. Nanotechnol., 2021,16:811-819. doi: 10.1038/s41565-021-00903-6

    3. [3]

      HUANG T, DING J F, LIU Z R, ZHANG R, ZHANG B L, XIONG K, ZHANG L Z, WANG C, SHEN S L, LI C Y, YANG P, QIU F. Insight into the underlying competitive mechanism for the shift of the charge neutrality point in a trilayer-graphene field-effect transistor[J]. eScience, 2022,2(3):319-328. doi: 10.1016/j.esci.2022.03.005

    4. [4]

      YANG Y N, WANG J Q, WANG Z, SHAO C X, HAN Y Y, WANG Y, LIU X T, SUN X T, WANG L R, LI Y Y, GUO Q, WU W P, CHEN N, QU L T. Moisture-electric-moisture-sensitive heterostructure triggered proton hopping for quality-enhancing moist-electric generator[J]. Nano-Micro Lett., 2023,16(1):56-61.

    5. [5]

      WEI Q M, GE W N, YUAN Z C, WANG S X, LU C G, FENG S L, ZHAO L, LIU Y H. Moisture electricity generation: Mechanisms, structures, and applications[J]. Nano Res., 2023,16(5):7496-7510. doi: 10.1007/s12274-023-5465-9

    6. [6]

      WANG L F, WANG H Y, WU C X, BAI J X, HE T C, LI Y, CHENG H H, QU L T. Moisture-enabled self-charging and voltage stabilizing supercapacitor[J]. Nat. Commun., 2024,154929. doi: 10.1038/s41467-024-49393-9

    7. [7]

      HABIBI Y, LUCIA L A, ROJAS O J. Cellulose nanocrystals: Chemistry, self-assembly, and applications[J]. Chem. Rev., 2010,110(6):3479-3500. doi: 10.1021/cr900339w

    8. [8]

      ZHANG T, HAN X W, PENG Y K, YU H, PU J W. Modified wood fibers spontaneously harvest electricity from moisture[J]. Polymers, 2024,16(2)260. doi: 10.3390/polym16020260

    9. [9]

      WANG C, SUN J J, LU W P, LI B P, LI G X, DING Y H, HUANG Y, GENG J X. Synergetic deoxy reforming of cellulose and fatty acid esters for liquid hydrocarbon-rich oils[J]. Bioresour. Technol., 2015,196:217-224. doi: 10.1016/j.biortech.2015.07.079

    10. [10]

      JIN L P, ZHAO W, FENG Z H, ZHAO Y, ZHANG Y X, CHEN N, NI Y H. Environmentally friendly synthesis of poly(hydroxyurethane) vitrimer microspheres and their potential application in moisture-enabled electric generation[J]. ACS Appl. Polym. Mater., 2024,6(4):2294-2304. doi: 10.1021/acsapm.3c02827

    11. [11]

      LYU Q, PENG B, XIE Z J, DU S, ZHANG L B, ZHU J. Moist-induced electricity generation by electrospun cellulose acetate membranes with optimized porous structures[J]. ACS Appl. Polym. Mater., 2020,12(51):57373-55738. doi: 10.1021/acsami.0c17931

    12. [12]

      ZHONG H, WANG S J, WANG Z G, JIANG J C. Asymmetric self-powered cellulose-based aerogel for moisture-electricity generation and humidity sensing[J]. Chem. Eng. J., 2024,486150203. doi: 10.1016/j.cej.2024.150203

    13. [13]

      CHEN T, ZHANG D L, TIAN X Z, QIANG S, SUN C, DAI L, ZHANG M Y, NI Y H, JIANG X. Highly ordered asymmetric cellulose-based honeycomb membrane for moisture-electricity generation and humidity sensing[J]. Carbohyd. Polym., 2022,294119809. doi: 10.1016/j.carbpol.2022.119809

    14. [14]

      CHEN Y, PÖTSCHKE P, PIONTECK J, VOIT B, QI H S. Smart cellulose/graphene composites fabricated by in situ chemical reduction of graphene oxide for multiple sensing applications[J]. J. Mater. Chem. A, 2018,6(17):7777-7785. doi: 10.1039/C8TA00618K

    15. [15]

      LI Z X, WANG J, DAI L, SUN X H, AN M, DUAN C, LI J, NI Y H. Asymmetrically patterned cellulose nanofibers/graphene oxide composite film for humidity sensing and moist-induced electricity generation[J]. ACS Appl. Mater. Interfaces, 2020,12(49):55205-55214. doi: 10.1021/acsami.0c17970

    16. [16]

      ZHAO F, CHENG H H, ZHANG Z P, JIANG L, QU L T. Direct power generation from a graphene oxide film under moisture[J]. Adv. Mater., 2015,27(29):4351-4357. doi: 10.1002/adma.201501867

    17. [17]

      JIANG Z W. The hydrogen bonding interaction and inclusive complex structure of cellulose in NaOH/urea(thiourea) aqueous system [D]. Wuhan: Wuhan University, 2014.

    18. [18]

      WANG S. Interaction, mechanism and properties of cellulose dissolved in alkaline aqueous solution[D]. Wuhan: Wuhan University, 2017.

    19. [19]

      DING Y B, BAI W, SUN J H, WU Y, MEMON M A, WANG C, LIU C B, HUANG Y, GENG J X. Cellulose tailored anatase TiO2 nanospindles in three-dimensional graphene composites for high-performance supercapacitors[J]. ACS Appl. Mater. Interfaces, 2016,8(19):12165-12175. doi: 10.1021/acsami.6b02164

    20. [20]

      SONG Y B, SUN Y X, ZHANG X Z, ZHOU J P, ZHANG L N. Homo-geneous quaternization of cellulose in NaOH/urea aqueous solutions as gene carriers[J]. Biomacromolecules, 2008,9(8):2259-2264. doi: 10.1021/bm800429a

    21. [21]

      ZHOU J P, ZHANG L N. Solubility of cellulose in NaOH/urea aqueous solution[J]. Polym. J, 2000,32(10):866-870. doi: 10.1295/polymj.32.866

    22. [22]

      LIU G. Molecular dynamics study on the dissolution of cellulose in alkali/urea aqueous solution[D]. Jinan: Shandong University, 2020.

    23. [23]

      ZHANG L N, RUAN D, ZHOU J P. Structure and properties of regenerated cellulose films prepared from cotton linters in NaOH/ urea aqueous solution[J]. Ind. Eng. Chem. Res., 2001,40(25):5923-5928. doi: 10.1021/ie0010417

    24. [24]

      YOU J, HU H Z, ZHOU J P, ZHANG L N, ZHANG Y P, KONDO T. Novel cellulose polyampholyte-gold nanoparticle-based colorimetric competition assay for the detection of cysteine and mercury (Ⅱ)[J]. Langmuir, 2013,29(16):5085-5092. doi: 10.1021/la3050913

    25. [25]

      KUGO Y, NOMURA S, ISONO T, SATO S I, FUJIWARA M, SATOH T, TANI H, ERATA T, TAJIMA K. Elucidating the structural changes of cellulose molecules and dynamics of Na ions during the crystal transition from cellulose Ⅰ to Ⅱ in low temperature and low concentration NaOH solution[J]. Carbohyd. Polym., 2024,332:121907-121915. doi: 10.1016/j.carbpol.2024.121907

    26. [26]

      GONG J, LI J, XU J, XIANG Z Y, MO L H. Research on cellulose nanocrystals produced from cellulose sources with various polymorphs[J]. RSC Adv., 2017,7(53):33486-33493. doi: 10.1039/C7RA06222B

    27. [27]

      ZHAO Y Y, CHEN S K, WU J M, DONG X, LIANG Z H, SONG F, WANG Y Z. Cellulose microfibers from rice straw: Low-temperature alkali-mediated extraction and functionalization for thermal insulation and electromagnetic shielding[J]. Ind. Crop. Prod., 2023,204(15)117306.

    28. [28]

      XIE K, TU H, DOU Z L, LIU D Y, WU K, LIU Y H, CHEN F, ZHANG L N, FU Q. The effect of cellulose molecular weight on internal structure and properties of regenerated cellulose fibers as spun from the alkali/urea aqueous system[J]. Polymer, 2021,215123379. doi: 10.1016/j.polymer.2021.123379

    29. [29]

      SUN Z Y, WEN X, WANG L M, JI D X, QIN X H, YU J Y, RAMAKRISHNA S. Emerging design principles, materials, and applications for moisture-enabled electric generation[J]. eScience, 2022,2(1):32-46. doi: 10.1016/j.esci.2021.12.009

    30. [30]

      WANG C H, LIAO W S, LIN Z H, KU N J, LI Y C, CHEN Y C, WANG Z L, LIU C P. Optimization of the output efficiency of GaN nanowire piezoelectric nanogenerators by tuning the free carrier concentration[J]. Adv. Energy Mater., 2014,4(16)1400392. doi: 10.1002/aenm.201400392

    31. [31]

      ZHAO F, LIANG Y, CHENG H H, JIANG L, QU L T. Highly efficient moisture-enabled electricity generation from graphene oxide frameworks[J]. Energy Environ. Sci., 2016,9(3):912-916. doi: 10.1039/C5EE03701H

    32. [32]

      ZHANG Y X, GUO S, YU Z G, QU H, SUN W X, YANG J C, SURESH L, ZHANG X P, KOH J J, TAN S C. An asymmetric hygroscopic structure for moisture-driven hygro-ionic electricity generation and storage[J]. Adv. Mater., 2022,34(21)2201228. doi: 10.1002/adma.202201228

    33. [33]

      MO J L, WANG X J, LIN X J, FENG X, QIU C J, TAO S M, CHEN P H, ZHU K K, QI H S. Sulfated cellulose nanofibrils-based hydrogel moist-electric generator for energy harvesting[J]. Che. Eng. J., 2024,491152055. doi: 10.1016/j.cej.2024.152055

    34. [34]

      WEN X, SUN Z Y, XIE X Y, ZHOU Q, LIU H J, WANG L M, QIN X H, TAN S C. High-performance fully stretchable moist-electric generator[J]. Adv. Funct. Mater., 2023,34(11)2311128.

  • 加载中
    1. [1]

      Yan'e LIUShengli JIAYifan JIANGQinghua ZHAOYi LIXinshu CHANG . MoO3/cellulose derived carbon aerogel: Fabrication and performance as cathode for lithium-sulfur battery. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1565-1573. doi: 10.11862/CJIC.20250054

    2. [2]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    3. [3]

      Meng-Yin WangRuo-Bei HuangJian-Feng XiongJing-Hua TianJian-Feng LiZhong-Qun Tian . Critical Role and Recent Development of Separator in Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2307017-0. doi: 10.3866/PKU.WHXB202307017

    4. [4]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    5. [5]

      Yixuan WangCanhui ZhangXingkun WangJiarui DuanKecheng TongShuixing DaiLei ChuMinghua Huang . Engineering Carbon-Chainmail-Shell Coated Co9Se8 Nanoparticles as Efficient and Durable Catalysts in Seawater-Based Zn-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2305004-0. doi: 10.3866/PKU.WHXB202305004

    6. [6]

      Chen PuDaijie DengHenan LiLi Xu . Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability. Acta Physico-Chimica Sinica, 2024, 40(2): 2304021-0. doi: 10.3866/PKU.WHXB202304021

    7. [7]

      Ying LiangYuheng DengShilv YuJiahao ChengJiawei SongJun YaoYichen YangWanlei ZhangWenjing ZhouXin ZhangWenjian ShenGuijie LiangBin LiYong PengRun HuWangnan Li . Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells. Acta Physico-Chimica Sinica, 2025, 41(9): 100098-0. doi: 10.1016/j.actphy.2025.100098

    8. [8]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    9. [9]

      Ying LiYushen ZhaoKai ChenXu LiuTingfeng YiLi-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007

    10. [10]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    11. [11]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    12. [12]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    13. [13]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(11): 0-0.

    14. [14]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    15. [15]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    16. [16]

      Yixuan Zhu Qingtong Wang Jin Li Lin Chen Junlong Zhao . Blog of Oxytocin. University Chemistry, 2024, 39(9): 134-140. doi: 10.12461/PKU.DXHX202310090

    17. [17]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    18. [18]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    19. [19]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    20. [20]

      Honghong ZhangZhen WeiDerek HaoLin JingYuxi LiuHongxing DaiWeiqin WeiJiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073

Metrics
  • PDF Downloads(1)
  • Abstract views(687)
  • HTML views(45)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return