Citation: Zhuoya WANG, Le HE, Zhiquan LIN, Yingxi WANG, Ling LI. Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194 shu

Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide

  • Corresponding author: Ling LI, lingli@hubu.edu.cn
  • Received Date: 25 May 2024
    Revised Date: 20 October 2024

Figures(6)

  • A multifunctional nanomaterial CuO2/PB with H2O2 self-supply and photothermal-enhanced enzyme-like activity was obtained by introducing CuO2 into Prussian blue (PB). The simulated tumor microenvironment (TME) can produce H2O2 and consume glutathione (GSH), further enhancing the generation of ·OH and the consumption of GSH with near-infrared light irradiation. In addition, mouse experiments have shown that CuO2/PB can be used for T2 -magnetic resonance imagingguided tumor therapy. In the 14 d treatment cycle, combined with near-infrared light irradiation, it had a significant inhibitory effect on tumors, achieving photothermal therapy combined with H2O2 self-supply catalytic therapy, which provides a new idea for improving the efficiency of catalytic treatment.
  • 加载中
    1. [1]

      Zhang B W, Chen G, Wu X M, Li Y, Xiao Y X, Li J S, He L J, Li Y Q, Wang S H, Zhao J H, Liu C L, Zhou H, Li Y H, Pei X T. Biomimetic Prussian blue nanozymes with enhanced bone marrow targeting for treatment of radiation induced hematopoietic injury[J]. Biomaterials, 2023,293121980. doi: 10.1016/j.biomaterials.2022.121980

    2. [2]

      Zhang W X, Li W Y, Shu Y, Wang J H. Manganese-enriched Prussian blue nanohybrids with smaller electrode potential and lower charge transfer resistance to enhance combination therapy[J]. Colloid Surf. B Biointerfaces, 2024,241114045. doi: 10.1016/j.colsurfb.2024.114045

    3. [3]

      Yao J L, Qiu Y, Xing J, Li Z H, Zhang A, Tu K W, Peng M J, Wu X X, Yang F, Wu A G. Highly-efficient gallium-interference tumor therapy mediated by gallium-enriched Prussian blue nanomedicine[J]. ACS Nano, 2024,18(7):5556-5570.

    4. [4]

      Wang P F, Sun S H, Bai G S, Zhang R Q, Liang F, Zhang Y Z. Nanosized Prussian blue and its analogs for bioimaging and cancer theranostics[J]. Acta Biomater., 2024,176:77-98. doi: 10.1016/j.actbio.2023.12.047

    5. [5]

      Liu C, Xu X Y, Chen Y Y, Yin M, Mäkilä E, Zhou W H, Su W M, Zhang H B. Metabolism-regulating nanozyme system for advanced nanocatalytic cancer therapy[J]. Small, 2024,20(24)2307794. doi: 10.1002/smll.202307794

    6. [6]

      TAO N, Chen S H, Mahdinloo S, Zhang Q Y, Lan T F, Saiding Q L, Chen S Y, Xiong Y, Tao W, Ouyang J. A pH-responsive single-atom nanozyme for photothermal augmented nanocatalytic tumor therapy[J]. Nano Today, 2024,57102371. doi: 10.1016/j.nantod.2024.102371

    7. [7]

      ZHANG Q, Zhuang T L, Sun X H, Bao Y L, Zhu L Q, Zhang Q, Han J, Guo R. "Four-in-one" nanozyme for amplified catalytic-photothermal therapy[J]. J. Colloid Interface Sci., 2024,665:1-9. doi: 10.1016/j.jcis.2024.03.122

    8. [8]

      Yue Z Y, Li J L, Tang M L, Sun T D, Chen C X, Wu Z G. Nanozymebased clusterphene for enhanced electrically catalytic cancer therapy[J]. Adv. Healthc. Mater., 2024,13(9)2303222. doi: 10.1002/adhm.202303222

    9. [9]

      LI Y, Du Z K, Zhang Y, Kang X Y, Song J W, Chen X D, Hu Y B, Yang Z M, Qi J, Shen X. Boosting theranostic performance of AIEgens using nanocatalyzer for robust cancer immunotherapy[J]. Adv. Funct. Mater., 2024,34(23)2315127. doi: 10.1002/adfm.202315127

    10. [10]

      Huang Q X, Liang J L, Niu M T, Jin X K, Dong C Y, Cheng S X, Zhang X Z. Interfering tumor metabolism by bimetallic nanoagent for amplifying nanocatalytic mediated glioblastoma immunotherapy[J]. Nano Today, 2024,56102253. doi: 10.1016/j.nantod.2024.102253

    11. [11]

      Zeng F, Pan Y C, Lu Q G, Luan X W, Qin S R, Liu Y T, Liu Z Y, Yang J J, He B S, Song Y J. Selfgenerating gold nanocatalysts in autologous tumor cells for targeted catalytic immunotherapy[J]. Adv. Healthc. Mater., 2024,13(14)2303683. doi: 10.1002/adhm.202303683

    12. [12]

      Falahati M, Sharifi M, Vahdani Y, Haghighat S, Ten Hagen T L M, Cai Y. Catalytic imaging-guided cancer therapy using non-coordinated and coordinated nanozymes[J]. Coord. Chem. Rev., 2024,507215755. doi: 10.1016/j.ccr.2024.215755

    13. [13]

      Lin L S, Huang T, Song J B, Ou X Y, Wang Z T, Deng H Z, Tian R, Liu Y J, Wang J F, Liu Y, Yu G C, Zhou Z J, Wang S, Niu G, Yang H H, Chen X Y. Synthesis of copper peroxide nanodots for H2O2 selfsupplying chemodynamic therapy[J]. J. Am. Chem. Soc., 2019,141(25):9937-9945. doi: 10.1021/jacs.9b03457

    14. [14]

      Shen X Y, Zhao D H, Shi J Y, Li C Q, Bai Y, Qiu L, Xuan Y, Wang J H. Copper peroxide loaded gelatin/oxide dextran hydrogel with temperature and pH responsiveness for antibacterial and wound healing activity[J]. Int. J. Biol. Macromol., 2024,274133258. doi: 10.1016/j.ijbiomac.2024.133258

    15. [15]

      Wei D L, Xiong D H, Zhu N F, Wang Y, Hu X L, Zhao B Y, Zhou J H, Yin D Q, Zhang Z. Copper peroxide nanodots encapsulated in a metal-organic framework for selfsupplying hydrogen peroxide and signal amplification of the dual-mode immunoassay[J]. Anal. Chem., 2022,94(38):12981-12989. doi: 10.1021/acs.analchem.2c01068

    16. [16]

      Deng H Z, Yang Z, Pang X Y, Zhao C Y, Tian J, Wang Z L, Chen X Y. Self-sufficient copper peroxide loaded pKa-tunable nanoparticles for lysosome-mediated chemodynamic therapy[J]. Nano Today, 2022,42101337. doi: 10.1016/j.nantod.2021.101337

    17. [17]

      CHEN C M, Tan Y X, Xu T, Sun Y H, Zhao S, Ouyang Y, Chen Y, He L, Liu X D, Liu H. Sorafenib-loaded copper peroxide nanoparticles with redox balance disrupting capacity for enhanced chemodynamic therapy against tumor cells[J]. Langmuir, 2022,38(40):12307-12315. doi: 10.1021/acs.langmuir.2c019387

    18. [18]

      Hou S X, Gao Y E, Ma X B, Lu Y, Li X Y, Cheng J Q, Wu Y Q, Xue P, Kang Y J, Guo M G, Xu Z G. Tumor microenvironment responsive biomimetic copper peroxide nanoreactors for drug delivery and enhanced chemodynamic therapy[J]. Chem. Eng. J., 2021,416129037. doi: 10.1016/j.cej.2021.129037

    19. [19]

      SUI C X, Tan R, Chen Y W, Yin G T, Wang Z Y, Xu W G, Li X F. MOFsderived Fe-N codoped carbon nanoparticles as O2-evolving reactor and ROS generator for CDT/PDT/PTT synergistic treatment of tumors[J]. Bioconjugate Chem., 2021,32(2):318-327. doi: 10.1021/acs.bioconjchem.0c00694

    20. [20]

      Chen K R, Zhou A W, Zhou X Y, He J L, Xu Y R, Ning X H. Cellular Trojan Horse initiates bimetallic Fe-Cu MOF-mediated synergistic cuproptosis and ferroptosis against malignancies[J]. Sci. Adv., 2024,10(15)eadk3201. doi: 10.1126/sciadv.adk3201

    21. [21]

      Li X, Ma Z F, Wang H Z, Shi Q, Xie Z G, Yu J H. Research progress of copper-based metal-organic frameworks for cancer diagnosis and therapy[J]. Coord. Chem. Rev., 2024,514215943. doi: 10.1016/j.ccr.2024.215943

    22. [22]

      Wu M Y, Liu S P, Liu Z C, Huang F B, Xu X M, Shuai Q. Photothermal interference urease-powered polydopamine nanomotor for enhanced propulsion and synergistic therapy[J]. Colloid Surf. BBiointerfaces, 2022,212112353. doi: 10.1016/j.colsurfb.2022.112353

    23. [23]

      Xue F F, Wen Y, Wei P, Gao Y L, Zhou Z G, Xiao S Z, Yi T. A smart drug: A pH-responsive photothermal ablation agent for Golgi apparatus activated cancer therapy[J]. Chem. Commun., 2017,53(48):6424-6427. doi: 10.1039/C7CC03168H

    24. [24]

      Xin Z C, Shen Y T, Hao H, Zhang L, Hu X X, Wang J. Hyaluronic acid coated mesoporous carboncopper peroxide for H2O2 self-supplying and near-infrared responsive multi-mode breast cancer oncotherapy[J]. Colloid Surf. B-Biointerfaces, 2022,218112776. doi: 10.1016/j.colsurfb.2022.112776

    25. [25]

      He L, Ding G, You S S, Lu S, Huang X F, Li L, Yu X L. Construction of Cu/ZIF-67/Prussian blue nanostructures with photothermalenhanced multizyme activity for cancer therapy[J]. ACS Appl. Nano Mater., 2023,6(12):10779-10790. doi: 10.1021/acsanm.3c01904

    26. [26]

      Liu F R, He T, Gong S L, Shen M L, Ma S, Huang X Z, Li L, Wang L, Wu Q J, Gong C Y. A tumor pH-responsive autocatalytic nanoreactor as a H 2O2 and O2 self supplying depot for enhanced ROS based chemo/photodynamic therapy[J]. Acta Biomater., 2022,154510522.

    27. [27]

      Zuo J G, Hao S Y, Li W Q, Huang H W, Liu M X, Guo H L. pHresponsive nanocatalyst for enhancing cancer therapy via H2O2 homeostasis disruption and disulfiram sensitization[J]. J. Mat. Chem. B, 2023,11(15):3397-3405. doi: 10.1039/D3TB00033H

    28. [28]

      You S S, Ding G, Chi B, Wang Z Y, Lu S, Li L, Yu X L, Wang J. Construction a starving therapy induced photothermal enhanced cascade nanoreactor for imaging guided catalytic synergistic therapy of tumor[J]. Colloid Surf. A-Physicochem. Eng. Asp., 2023,674131941. doi: 10.1016/j.colsurfa.2023.131941

    29. [29]

      Xiao F J, Yang D Z, Xun C, Li H Y, Li Q L, Zhong Z T, Wei D Q, Yang Y L. H2O2 self-supplying Mo/Fe@CuO2 nanozyme with NIR light enhanced catalytic activity and photothermal synergistic antibacterial application[J]. Appl. Surf. Sci., 2024,645158862. doi: 10.1016/j.apsusc.2023.158862

  • 加载中
    1. [1]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    2. [2]

      Siwei Lv Tantian Tan Xinyue Li Siyan Zhang Mingyuan Zhang Minghao Li Hangshuo Guo Zhaorong Li Liangjie Dong Fengshuo Zhang Junlong Zhao . Competition of the “King of Transboundary Medicine”. University Chemistry, 2024, 39(9): 102-108. doi: 10.12461/PKU.DXHX202403034

    3. [3]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    4. [4]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    5. [5]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    6. [6]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    7. [7]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    8. [8]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    9. [9]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    10. [10]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    11. [11]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    12. [12]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    13. [13]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    14. [14]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    15. [15]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    16. [16]

      Ziliang KANGJiamin ZHANGHong ANXiaohua LIUYang CHENJinping LILibo LI . Preparation and water adsorption properties of CaCl2@MOF-808 in-situ composite moulded particles. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2133-2140. doi: 10.11862/CJIC.20240282

    17. [17]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    18. [18]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    19. [19]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    20. [20]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

Metrics
  • PDF Downloads(2)
  • Abstract views(106)
  • HTML views(39)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return