Citation: Yueyue WEI, Xuehua SUN, Hongmei CHAI, Wanqiao BAI, Yixia REN, Loujun GAO, Gangqiang ZHANG, Jun ZHANG. Two Ln-Co (Ln=Eu, Sm) metal-organic frameworks: Structures, magnetism, and fluorescent sensing sulfasalazine and glutaraldehyde[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(12): 2475-2485. doi: 10.11862/CJIC.20240193 shu

Two Ln-Co (Ln=Eu, Sm) metal-organic frameworks: Structures, magnetism, and fluorescent sensing sulfasalazine and glutaraldehyde

  • Corresponding author: Hongmei CHAI, chm8550@163.com
  • #共同第一作者。
  • Received Date: 25 May 2024
    Revised Date: 13 September 2024

Figures(6)

  • We used pentacarboxylic acid ligand 3, 5-di(2', 4'-dicarboxylphenyl) benzoic acid (H5L) to synthesize two structural similarity lanthanide-cobalt heteronuclear bimetallic organic frameworks (Ln-Co-MOFs) by hydrothermal method: (C2H6NH2)5{[Eu9Co(L)6(H2O)5(OH)4] ·5DMF}n (1), (C2H6NH2)2{[Sm9Co(L)6(H2O)3Cl] ·5DMF}n (2). The structures were characterized and the property was tested by single crystal X-ray diffraction, powder X-ray diffraction, thermogravimetry, infrared, fluorescence spectra, and magnetism. The results show that 1 and 2 both belong to the trigonal R3 space group and have novel 3D structures and good thermal stability. Among them, 1 has strong fluorescence properties, which can sensitively identify drug molecules sulfasalazine and organic molecules glutaraldehyde. The detection limits could reach 0.95 and 2.10 μmol·L-1, respectively. In addition, 1 and 2 were antiferromagnetic at 1 kOe.
  • 加载中
    1. [1]

      Nozaki Y, Inoue A, Kinoshita K, Funauchi M, Matsumura I. Efficacy of iguratimod vs.salazosulfapyridine as the first line csDMARD for rheumatoid arthritis.[J]. Mod. Rheumatol., 2020,30(2):249-258. doi: 10.1080/14397595.2019.1572267

    2. [2]

      Claytor J, Kumar P, Ananthakrishnan N A, Colombel J, Agrawal M, Ungaro C R. Mild Crohn's disease: Definition and management[J]. Curr. Gastroenterol. Rep., 2023,25(3):45-51. doi: 10.1007/s11894-023-00863-y

    3. [3]

      Mushtaq S, Sarkar R. Sulfasalazine in dermatology: A lesser explored drug with broad therapeutic potential[J]. Int. J. Dermatol., 2020,6(3):191-198.

    4. [4]

      Yu H, Hu K, Zhang T, Ren H. Identification of target genes related to sulfasalazine in triple-negative breast cancer through network pharmacology[J]. Med. Sci. Monit., 2020,26e926550.

    5. [5]

      Sah N, Ramaiah B, Koneri R. Sulfasalazine-induced drug rash with eosinophilia and systemic symptoms syndrome in a seronegative spondyloarthritis patient: A case report[J]. Indian J. Pharmacol., 2021,53(5):391-393. doi: 10.4103/ijp.IJP_129_18

    6. [6]

      Sil A, Bhattacharjee S M, Chandra A, Pramanik D J. Sulfasalazine induced drug reaction with eosinophilia and systemic symptoms (DRESS) with concomitant acute chikungunya virus infection: possible role of new viral trigger[J]. BMJ Case Rep., 2021,14(10)e244063. doi: 10.1136/bcr-2021-244063

    7. [7]

      Winward J, Lyckholm L, Brown M S, Mokadem M. Republished: Case of relapsing sulfasalazine-induced hypersensitivity syndrome upon reexposure[J]. Drug and Therapeutics Bulletin, 2021,59(11):174-175. doi: 10.1136/dtb.2021.235803rep

    8. [8]

      Jolibois B, Guerbet M, Vassal S. Glutaraldehyde in hospital wastewater[J]. Arch. Environ. Contam. Toxicol., 2002,42(2):137-144. doi: 10.1007/s00244-001-0011-8

    9. [9]

      Ballantyne B, Jordan L S. Toxicological, medical and industrial hygiene aspects of glutaraldehyde with particular reference to its biocidal use in cold sterilization procedures[J]. J. Appl. Toxicol., 2001,21(2):131-151. doi: 10.1002/jat.741

    10. [10]

      Migneault I, Dartiguenave C, Vinh J, Bertrand M J, Waldron K C. Two glutaraldehyde immobilized trypsin preparations for peptide mapping by capillary zone electrophoresis, liquid chromatography, and mass spectrometry[J]. J. Liq. Chromatogr. Relat. Technol., 2008,31(6):789-806. doi: 10.1080/10826070801890413

    11. [11]

      Yu L Y, Wu M R, Dong W, Wen Y Q, Zhao C S, Liu S R, Jin J, Lin W. Rapid determination of glutaraldehyde in leather by UV spectroscopy reverse flow injection system[J]. J. Soc. Leather Technol. Chem., 2014,98(5):211-215.

    12. [12]

      Pieraccini G, Bartolucci G, Pacenti M, Dugheri S, Boccalon P, Focardi L. Gas chromatographic determination of glutaraldehyde in the workplace atmosphere after derivatization with O-(2, 3, 4, 5, 6-pentafluorobenzyl) hydroxylamine on a solidphase microextraction fibre[J]. J. Chromatogr. A, 2002,955(1):117-124. doi: 10.1016/S0021-9673(02)00199-1

    13. [13]

      Maggadani P B, Harmita , Isfadhila M. High-performance liquid chromatography analytical method validation glutaraldehyde and benzalkonium chloride in disinfeatants[J]. Int. J. Pharmaceut., 2018,10(1):248-251.

    14. [14]

      Kang H I, Shin H S. Sensitive determination of glutaraldehyde in environmental water by derivatization and gas chromatography-mass spectrometry[J]. Anal. Methods, 2016,8(15):3216-3223. doi: 10.1039/C5AY02798E

    15. [15]

      Tsamis V, Tsanaktsidou E, Karavasili C, Zacharis K C, Bouropoulos N, Fatouros G D, Markopoulou K C. Development and validation of HPLC-DAD and LC-(ESI)/MS methods for the determination of sulfasalazine, mesalazine and hydrocortisone 21-acetate in tablets and rectal suppositories: In vitro and ex vivo permeability studies[J]. J. Chromatogr. B, 2022,1198123246. doi: 10.1016/j.jchromb.2022.123246

    16. [16]

      Louw V, Brownfoot F, Cluver C, Decloedt E, Kellermann T. An LCMS/MS method for the simultaneous quantitation of sulfasalazine and sulfapyridine in human placenta[J]. J. Pharmaceut. Biomed., 2023,235115633. doi: 10.1016/j.jpba.2023.115633

    17. [17]

      ZHANG J, LIU X, LI Z X, PEI Y T, YANG Y Q, LI H M, LIU Z Q. Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metalorganic framework probe for ascorbic acid detection[J]. Chinese J. Inorg. Chem., 2024,40(4):823-833. doi: 10.11862/CJIC.20230310

    18. [18]

      Sakamoto R, Fukui N, Maeda H, Toyoda R, Takaishi S, Tanabe T, Komeda J, Amo-Ochoa P, Zamora F, Nishihara H. Layered metalorganic frameworks and metal-organic nanosheets as functional materials[J]. Coord. Chem. Rev., 2022,472214787. doi: 10.1016/j.ccr.2022.214787

    19. [19]

      Zha X Q, Zhao X H, Webb E, Khan S U, Wang Y. Beyond pristine metal organic frameworks: Preparation of hollow MOFs and their composites for catalysis, sensing, and adsorption removal applications[J]. Molecules, 2023,28(1):144-164.

    20. [20]

      HAN X, WANG L Y, GENG F J, XI G Q. Adsorption of rhodamine B by benzimidazole based metalorganic framework/graphene oxide composites[J]. Chinese J. Inorg. Chem., 2023,39(6):1159-1168. doi: 10.11862/CJIC.2023.061

    21. [21]

      Amooghin E A, Sanaeepur H, Ghomi M, Luque R, Garcia H, Banglin Chen. Flexible-robust MOFs/HOFs for challenging gas separations[J]. Coord. Chem. Rev., 2024,505215660. doi: 10.1016/j.ccr.2024.215660

    22. [22]

      AN Y Y, LU L P, ZHU M L. One Cd-MOF as a multi-responsive fluorescent probe for sensing Fe (Ⅲ) and Cr (Ⅵ)[J]. Chinese J. Inorg. Chem., 2023,39(5):939-946.

    23. [23]

      Wang H M, Feng X N, Xia Y, Yin X B. Dual-ligand terbium metalorganic framework for visual ratiometric fluorescence sensing of nitrites in pickles[J]. ACS Food Sci. Technol., 2022,2:1911-1920. doi: 10.1021/acsfoodscitech.2c00278

    24. [24]

      XU H, PAN Z R, QI Z P, SUN J. Three luminescent Zn-MOFs based on V-shaped ligands for fluorescence sensing of 2, 4, 6-trinitrophenol and Fe3+ in aqueous solution[J]. Chinese J. Inorg.Chem., 2022,38(12):2479-2490. doi: 10.11862/CJIC.2022.238

    25. [25]

      Liu X F, Ma Q Q, Feng X, Li R F, Zhang X Y. A recycled Tb-MOF fluorescent sensing material for highly sensitive and selective detection of tetracycline in milk[J]. Microchem. J., 2021,170106714. doi: 10.1016/j.microc.2021.106714

    26. [26]

      Zhao Z Q, Yang S, Zhu M C, Zhang Y, Sun Y G, Wu S Y. A multicenter lanthanide coordination polymer for ratiometric pesticide monitoring[J]. Sens Actuator B-Chem., 2023,383133593. doi: 10.1016/j.snb.2023.133593

    27. [27]

      ZHU Z X, WANG C J, LIU C, XIAO Y M, LUO D, LIU D N, WANG Y Y. A Zn-MOF luminescent sensor for selective detection of styrene[J]. Chinese J. Inorg. Chem., 2020,36(10):1941-1947. doi: 10.11862/CJIC.2020.224

    28. [28]

      Zhang G Q, Gao L J, Chai H M, Ren Y X. Novel multifunctional samarium-organic framework for fluorescence sensing of Ag+, MnO4-, and cimetidine and electrochemical sensing of o-nitrophenol in aqueous solutions[J]. ACS Omega, 2021,6(10):6810-6816. doi: 10.1021/acsomega.0c05867

    29. [29]

      Jimenez V O, Pham H T Y, Zhou D, Liu M, Nugera A F, Kalappattil V, Eggers T, Hoang K, Duong L D, Terrones M, Gutiérrez R H, Phan H M. Transition metal dichalcogenides: Making atomic-level magnetism tunable with light at room temperature[J]. Adv. Sci., 2024,11(7)2304792. doi: 10.1002/advs.202304792

    30. [30]

      Obeidat A, Aladerah B, Gharaibeh M, Aledealat K. Magnetism and magnetic properties of 3D transition metal monolayer on Pd (100)[J]. J. Magn. Magn. Mater., 2023,585171116. doi: 10.1016/j.jmmm.2023.171116

    31. [31]

      DING L L, ZHANG Y H, GU J Y, TAN H Y, ZHU L B. Determination of the carboxyl content of oxidized starch by Fourier transform infrared (FTIR) spectroscopy[J]. Spectrosc. Spectr. Anal., 2014,34(2):401-404.

    32. [32]

      Ramya A R, Reddy M L P, Cowley A H, Vasudevan K V. Synthesis, crystal structure, and photoluminescence of homodinuclear lanthanide 4(dibenzylamino) benzoate complexes[J]. Inorg. Chem., 2010,49(5):2407-2415.

    33. [33]

      Fan L H, Zhang J Y, Zhao Y, Sun C Y, Li W J, Chang Z D. A robust Eu-MOF as a multi-functional fluorescence sensor for detection of benzaldehyde, Hg2+, and Cr2O72-/CrO42-[J]. Microchem. J, 2024,196109712.

    34. [34]

      Song Q, Wang L, Zhang J, Liu Y, Zhang X, Kong X. Fabrication of Eu-MOFs rod-shaped nanospheres with dual emissions for ratiometric fluorescence detecting Hg2+ in water[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2024,312124013.

    35. [35]

      Dong X Y, Li D Q C, Li Y Y, Sakiyama H, Muddassir M, Pan Y, Srivastava D, Kumar A. A 3, 8-connected Cd (Ⅱ)-based metal-organic framework as an appropriate luminescent sensor for the antibiotic sulfasalazine[J]. CrystEngComm, 2022,24:7157-7165.

    36. [36]

      Jia Y H, Wang J M, Zhao L M, Yan B. Eu3+-β-diketone functionalized covalent organic framework hybrid material as a sensitive and rapid response fluorescent sensor for glutaraldehyde[J]. Talanta, 2022,236122877.

    37. [37]

      Xu X, Meng R, Lu C, Mei L, Chen L, Zhao J. Acetate-decorated triLn (Ⅲ)-containing antimonotungstates with a tetrahedral{WO4}group as a structure-directing template and their luminescence properties[J]. Inorg. Chem., 2020,59(6):3954-3963.

    38. [38]

      Song X M, Hou X F, Zhao Q X, Ma Z H, Ren Y X. Fluorescence quenching mechanisms of novel isomorphic Zn/Cd coordination polymers for selective nitrobenzene detection[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2024,308123729.

    39. [39]

      Dong X P, Qi H X, Zhai Z H, Li W Q, Zhang P D. Probing the fluorescence quenching mechanism of N-doped carbon quantum dots by inorganic ions[J]. Microchem. J., 2024,197109854.

    40. [40]

      CUI S X, ZHANG W W, SHEN J M, RU L Y, ZHAO Y, XU B, ZUO M H. Syntheses, crystal structures, and magnetic properties of bimetallic complex[Fe (2, 2'-bpy)2Ni (CN)4]n[J]. J. Chin. Ceram. Soc., 2020,48(6):919-924.

  • 加载中
    1. [1]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    2. [2]

      Ning LISiyu DUXueyi WANGHui YANGTao ZHOUZhimin GUANPeng FEIHongfang MAShang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372

    3. [3]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    4. [4]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    5. [5]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    6. [6]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    7. [7]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    8. [8]

      Yadan SUNXinfeng LIQiang LIUOshio HirokiYinshan MENG . Structures and magnetism of dinuclear Co complexes based on imine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2212-2220. doi: 10.11862/CJIC.20240131

    9. [9]

      Ya-Wen Zhang Ming-Ming Gan Li-Ying Sun Ying-Feng Han . Supramolecular dinuclear silver(I) and gold(I) tetracarbene metallacycles and fluorescence sensing of penicillamine. Chinese Journal of Structural Chemistry, 2024, 43(9): 100356-100356. doi: 10.1016/j.cjsc.2024.100356

    10. [10]

      Juanjuan WangFang WangBin QinYue WuHuan YangXiaolong LiLanfang WangXiufang QinXiaohong Xu . Controlled synthesis and excellent magnetism of ferrimagnetic NiFe2Se4 nanostructures. Chinese Chemical Letters, 2024, 35(11): 109449-. doi: 10.1016/j.cclet.2023.109449

    11. [11]

      Quan ZhangShunjie XingJingqian HanLi FengJianchun LiZhaosheng QianJin Zhou . Organic pollutant sensing for human health based on carbon dots. Chinese Chemical Letters, 2025, 36(1): 110117-. doi: 10.1016/j.cclet.2024.110117

    12. [12]

      Liangji ChenZhen YuanFudong FengXin ZhouZhile XiongWuji WeiHao ZhangBanglin ChenShengchang XiangZhangjing Zhang . A hydrogen-bonded organic framework containing fluorescent carbazole and responsive pyridyl units for sensing organic acids. Chinese Chemical Letters, 2024, 35(9): 109344-. doi: 10.1016/j.cclet.2023.109344

    13. [13]

      Chao LiuChao JiaShi-Xian GanQiao-Yan QiGuo-Fang JiangXin Zhao . A luminescent one-dimensional covalent organic framework for organic arsenic sensing in water. Chinese Chemical Letters, 2024, 35(11): 109750-. doi: 10.1016/j.cclet.2024.109750

    14. [14]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    15. [15]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    16. [16]

      Lihua MaSong GuoZhi-Ming ZhangJin-Zhong WangTong-Bu LuXian-Shun Zeng . Sensitizing photoactive metal–organic frameworks via chromophore for significantly boosting photosynthesis. Chinese Chemical Letters, 2024, 35(5): 108661-. doi: 10.1016/j.cclet.2023.108661

    17. [17]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

    18. [18]

      Yunyu ZhaoChuntao YangYingjian Yu . A review on covalent organic frameworks for rechargeable zinc-ion batteries. Chinese Chemical Letters, 2024, 35(7): 108865-. doi: 10.1016/j.cclet.2023.108865

    19. [19]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    20. [20]

      Kang Wang Qinglin Zhou Weijin Li . Conductive metal-organic frameworks for electromagnetic wave absorption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100325-100325. doi: 10.1016/j.cjsc.2024.100325

Metrics
  • PDF Downloads(1)
  • Abstract views(33)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return