Two Ln-Co (Ln=Eu, Sm) metal-organic frameworks: Structures, magnetism, and fluorescent sensing sulfasalazine and glutaraldehyde
- Corresponding author: Hongmei CHAI, chm8550@163.com #共同第一作者。
Citation: Yueyue WEI, Xuehua SUN, Hongmei CHAI, Wanqiao BAI, Yixia REN, Loujun GAO, Gangqiang ZHANG, Jun ZHANG. Two Ln-Co (Ln=Eu, Sm) metal-organic frameworks: Structures, magnetism, and fluorescent sensing sulfasalazine and glutaraldehyde[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(12): 2475-2485. doi: 10.11862/CJIC.20240193
Nozaki Y, Inoue A, Kinoshita K, Funauchi M, Matsumura I. Efficacy of iguratimod vs.salazosulfapyridine as the first line csDMARD for rheumatoid arthritis.[J]. Mod. Rheumatol., 2020,30(2):249-258. doi: 10.1080/14397595.2019.1572267
Claytor J, Kumar P, Ananthakrishnan N A, Colombel J, Agrawal M, Ungaro C R. Mild Crohn's disease: Definition and management[J]. Curr. Gastroenterol. Rep., 2023,25(3):45-51. doi: 10.1007/s11894-023-00863-y
Mushtaq S, Sarkar R. Sulfasalazine in dermatology: A lesser explored drug with broad therapeutic potential[J]. Int. J. Dermatol., 2020,6(3):191-198.
Yu H, Hu K, Zhang T, Ren H. Identification of target genes related to sulfasalazine in triple-negative breast cancer through network pharmacology[J]. Med. Sci. Monit., 2020,26e926550.
Sah N, Ramaiah B, Koneri R. Sulfasalazine-induced drug rash with eosinophilia and systemic symptoms syndrome in a seronegative spondyloarthritis patient: A case report[J]. Indian J. Pharmacol., 2021,53(5):391-393. doi: 10.4103/ijp.IJP_129_18
Sil A, Bhattacharjee S M, Chandra A, Pramanik D J. Sulfasalazine induced drug reaction with eosinophilia and systemic symptoms (DRESS) with concomitant acute chikungunya virus infection: possible role of new viral trigger[J]. BMJ Case Rep., 2021,14(10)e244063. doi: 10.1136/bcr-2021-244063
Winward J, Lyckholm L, Brown M S, Mokadem M. Republished: Case of relapsing sulfasalazine-induced hypersensitivity syndrome upon reexposure[J]. Drug and Therapeutics Bulletin, 2021,59(11):174-175. doi: 10.1136/dtb.2021.235803rep
Jolibois B, Guerbet M, Vassal S. Glutaraldehyde in hospital wastewater[J]. Arch. Environ. Contam. Toxicol., 2002,42(2):137-144. doi: 10.1007/s00244-001-0011-8
Ballantyne B, Jordan L S. Toxicological, medical and industrial hygiene aspects of glutaraldehyde with particular reference to its biocidal use in cold sterilization procedures[J]. J. Appl. Toxicol., 2001,21(2):131-151. doi: 10.1002/jat.741
Migneault I, Dartiguenave C, Vinh J, Bertrand M J, Waldron K C. Two glutaraldehyde immobilized trypsin preparations for peptide mapping by capillary zone electrophoresis, liquid chromatography, and mass spectrometry[J]. J. Liq. Chromatogr. Relat. Technol., 2008,31(6):789-806. doi: 10.1080/10826070801890413
Yu L Y, Wu M R, Dong W, Wen Y Q, Zhao C S, Liu S R, Jin J, Lin W. Rapid determination of glutaraldehyde in leather by UV spectroscopy reverse flow injection system[J]. J. Soc. Leather Technol. Chem., 2014,98(5):211-215.
Pieraccini G, Bartolucci G, Pacenti M, Dugheri S, Boccalon P, Focardi L. Gas chromatographic determination of glutaraldehyde in the workplace atmosphere after derivatization with O-(2, 3, 4, 5, 6-pentafluorobenzyl) hydroxylamine on a solidphase microextraction fibre[J]. J. Chromatogr. A, 2002,955(1):117-124. doi: 10.1016/S0021-9673(02)00199-1
Maggadani P B, Harmita , Isfadhila M. High-performance liquid chromatography analytical method validation glutaraldehyde and benzalkonium chloride in disinfeatants[J]. Int. J. Pharmaceut., 2018,10(1):248-251.
Kang H I, Shin H S. Sensitive determination of glutaraldehyde in environmental water by derivatization and gas chromatography-mass spectrometry[J]. Anal. Methods, 2016,8(15):3216-3223. doi: 10.1039/C5AY02798E
Tsamis V, Tsanaktsidou E, Karavasili C, Zacharis K C, Bouropoulos N, Fatouros G D, Markopoulou K C. Development and validation of HPLC-DAD and LC-(ESI)/MS methods for the determination of sulfasalazine, mesalazine and hydrocortisone 21-acetate in tablets and rectal suppositories: In vitro and ex vivo permeability studies[J]. J. Chromatogr. B, 2022,1198123246. doi: 10.1016/j.jchromb.2022.123246
Louw V, Brownfoot F, Cluver C, Decloedt E, Kellermann T. An LCMS/MS method for the simultaneous quantitation of sulfasalazine and sulfapyridine in human placenta[J]. J. Pharmaceut. Biomed., 2023,235115633. doi: 10.1016/j.jpba.2023.115633
ZHANG J, LIU X, LI Z X, PEI Y T, YANG Y Q, LI H M, LIU Z Q. Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metalorganic framework probe for ascorbic acid detection[J]. Chinese J. Inorg. Chem., 2024,40(4):823-833. doi: 10.11862/CJIC.20230310
Sakamoto R, Fukui N, Maeda H, Toyoda R, Takaishi S, Tanabe T, Komeda J, Amo-Ochoa P, Zamora F, Nishihara H. Layered metalorganic frameworks and metal-organic nanosheets as functional materials[J]. Coord. Chem. Rev., 2022,472214787. doi: 10.1016/j.ccr.2022.214787
Zha X Q, Zhao X H, Webb E, Khan S U, Wang Y. Beyond pristine metal organic frameworks: Preparation of hollow MOFs and their composites for catalysis, sensing, and adsorption removal applications[J]. Molecules, 2023,28(1):144-164.
HAN X, WANG L Y, GENG F J, XI G Q. Adsorption of rhodamine B by benzimidazole based metalorganic framework/graphene oxide composites[J]. Chinese J. Inorg. Chem., 2023,39(6):1159-1168. doi: 10.11862/CJIC.2023.061
Amooghin E A, Sanaeepur H, Ghomi M, Luque R, Garcia H, Banglin Chen. Flexible-robust MOFs/HOFs for challenging gas separations[J]. Coord. Chem. Rev., 2024,505215660. doi: 10.1016/j.ccr.2024.215660
AN Y Y, LU L P, ZHU M L. One CdⅡ-MOF as a multi-responsive fluorescent probe for sensing Fe (Ⅲ) and Cr (Ⅵ)[J]. Chinese J. Inorg. Chem., 2023,39(5):939-946.
Wang H M, Feng X N, Xia Y, Yin X B. Dual-ligand terbium metalorganic framework for visual ratiometric fluorescence sensing of nitrites in pickles[J]. ACS Food Sci. Technol., 2022,2:1911-1920. doi: 10.1021/acsfoodscitech.2c00278
XU H, PAN Z R, QI Z P, SUN J. Three luminescent Zn-MOFs based on V-shaped ligands for fluorescence sensing of 2, 4, 6-trinitrophenol and Fe3+ in aqueous solution[J]. Chinese J. Inorg.Chem., 2022,38(12):2479-2490. doi: 10.11862/CJIC.2022.238
Liu X F, Ma Q Q, Feng X, Li R F, Zhang X Y. A recycled Tb-MOF fluorescent sensing material for highly sensitive and selective detection of tetracycline in milk[J]. Microchem. J., 2021,170106714. doi: 10.1016/j.microc.2021.106714
Zhao Z Q, Yang S, Zhu M C, Zhang Y, Sun Y G, Wu S Y. A multicenter lanthanide coordination polymer for ratiometric pesticide monitoring[J]. Sens Actuator B-Chem., 2023,383133593. doi: 10.1016/j.snb.2023.133593
ZHU Z X, WANG C J, LIU C, XIAO Y M, LUO D, LIU D N, WANG Y Y. A Zn-MOF luminescent sensor for selective detection of styrene[J]. Chinese J. Inorg. Chem., 2020,36(10):1941-1947. doi: 10.11862/CJIC.2020.224
Zhang G Q, Gao L J, Chai H M, Ren Y X. Novel multifunctional samarium-organic framework for fluorescence sensing of Ag+, MnO4-, and cimetidine and electrochemical sensing of o-nitrophenol in aqueous solutions[J]. ACS Omega, 2021,6(10):6810-6816. doi: 10.1021/acsomega.0c05867
Jimenez V O, Pham H T Y, Zhou D, Liu M, Nugera A F, Kalappattil V, Eggers T, Hoang K, Duong L D, Terrones M, Gutiérrez R H, Phan H M. Transition metal dichalcogenides: Making atomic-level magnetism tunable with light at room temperature[J]. Adv. Sci., 2024,11(7)2304792. doi: 10.1002/advs.202304792
Obeidat A, Aladerah B, Gharaibeh M, Aledealat K. Magnetism and magnetic properties of 3D transition metal monolayer on Pd (100)[J]. J. Magn. Magn. Mater., 2023,585171116. doi: 10.1016/j.jmmm.2023.171116
DING L L, ZHANG Y H, GU J Y, TAN H Y, ZHU L B. Determination of the carboxyl content of oxidized starch by Fourier transform infrared (FTIR) spectroscopy[J]. Spectrosc. Spectr. Anal., 2014,34(2):401-404.
Ramya A R, Reddy M L P, Cowley A H, Vasudevan K V. Synthesis, crystal structure, and photoluminescence of homodinuclear lanthanide 4(dibenzylamino) benzoate complexes[J]. Inorg. Chem., 2010,49(5):2407-2415.
Fan L H, Zhang J Y, Zhao Y, Sun C Y, Li W J, Chang Z D. A robust Eu-MOF as a multi-functional fluorescence sensor for detection of benzaldehyde, Hg2+, and Cr2O72-/CrO42-[J]. Microchem. J, 2024,196109712.
Song Q, Wang L, Zhang J, Liu Y, Zhang X, Kong X. Fabrication of Eu-MOFs rod-shaped nanospheres with dual emissions for ratiometric fluorescence detecting Hg2+ in water[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2024,312124013.
Dong X Y, Li D Q C, Li Y Y, Sakiyama H, Muddassir M, Pan Y, Srivastava D, Kumar A. A 3, 8-connected Cd (Ⅱ)-based metal-organic framework as an appropriate luminescent sensor for the antibiotic sulfasalazine[J]. CrystEngComm, 2022,24:7157-7165.
Jia Y H, Wang J M, Zhao L M, Yan B. Eu3+-β-diketone functionalized covalent organic framework hybrid material as a sensitive and rapid response fluorescent sensor for glutaraldehyde[J]. Talanta, 2022,236122877.
Xu X, Meng R, Lu C, Mei L, Chen L, Zhao J. Acetate-decorated triLn (Ⅲ)-containing antimonotungstates with a tetrahedral{WO4}group as a structure-directing template and their luminescence properties[J]. Inorg. Chem., 2020,59(6):3954-3963.
Song X M, Hou X F, Zhao Q X, Ma Z H, Ren Y X. Fluorescence quenching mechanisms of novel isomorphic Zn/Cd coordination polymers for selective nitrobenzene detection[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2024,308123729.
Dong X P, Qi H X, Zhai Z H, Li W Q, Zhang P D. Probing the fluorescence quenching mechanism of N-doped carbon quantum dots by inorganic ions[J]. Microchem. J., 2024,197109854.
CUI S X, ZHANG W W, SHEN J M, RU L Y, ZHAO Y, XU B, ZUO M H. Syntheses, crystal structures, and magnetic properties of bimetallic complex[Fe (2, 2'-bpy)2Ni (CN)4]n[J]. J. Chin. Ceram. Soc., 2020,48(6):919-924.
Ruikui YAN , Xiaoli CHEN , Miao CAI , Jing REN , Huali CUI , Hua YANG , Jijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301
Ning LI , Siyu DU , Xueyi WANG , Hui YANG , Tao ZHOU , Zhimin GUAN , Peng FEI , Hongfang MA , Shang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372
Deshuai Zhen , Chunlin Liu , Qiuhui Deng , Shaoqi Zhang , Ningman Yuan , Le Li , Yu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249
Xiaowei TANG , Shiquan XIAO , Jingwen SUN , Yu ZHU , Xiaoting CHEN , Haiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173
Xin XIONG , Qian CHEN , Quan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064
Zhongxin YU , Wei SONG , Yang LIU , Yuxue DING , Fanhao MENG , Shuju WANG , Lixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304
Zhiqiang Liu , Qiang Gao , Wei Shen , Meifeng Xu , Yunxin Li , Weilin Hou , Hai-Wei Shi , Yaozuo Yuan , Erwin Adams , Hian Kee Lee , Sheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338
Yadan SUN , Xinfeng LI , Qiang LIU , Oshio Hiroki , Yinshan MENG . Structures and magnetism of dinuclear Co complexes based on imine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2212-2220. doi: 10.11862/CJIC.20240131
Ya-Wen Zhang , Ming-Ming Gan , Li-Ying Sun , Ying-Feng Han . Supramolecular dinuclear silver(I) and gold(I) tetracarbene metallacycles and fluorescence sensing of penicillamine. Chinese Journal of Structural Chemistry, 2024, 43(9): 100356-100356. doi: 10.1016/j.cjsc.2024.100356
Juanjuan Wang , Fang Wang , Bin Qin , Yue Wu , Huan Yang , Xiaolong Li , Lanfang Wang , Xiufang Qin , Xiaohong Xu . Controlled synthesis and excellent magnetism of ferrimagnetic NiFe2Se4 nanostructures. Chinese Chemical Letters, 2024, 35(11): 109449-. doi: 10.1016/j.cclet.2023.109449
Quan Zhang , Shunjie Xing , Jingqian Han , Li Feng , Jianchun Li , Zhaosheng Qian , Jin Zhou . Organic pollutant sensing for human health based on carbon dots. Chinese Chemical Letters, 2025, 36(1): 110117-. doi: 10.1016/j.cclet.2024.110117
Liangji Chen , Zhen Yuan , Fudong Feng , Xin Zhou , Zhile Xiong , Wuji Wei , Hao Zhang , Banglin Chen , Shengchang Xiang , Zhangjing Zhang . A hydrogen-bonded organic framework containing fluorescent carbazole and responsive pyridyl units for sensing organic acids. Chinese Chemical Letters, 2024, 35(9): 109344-. doi: 10.1016/j.cclet.2023.109344
Chao Liu , Chao Jia , Shi-Xian Gan , Qiao-Yan Qi , Guo-Fang Jiang , Xin Zhao . A luminescent one-dimensional covalent organic framework for organic arsenic sensing in water. Chinese Chemical Letters, 2024, 35(11): 109750-. doi: 10.1016/j.cclet.2024.109750
Meirong HAN , Xiaoyang WEI , Sisi FENG , Yuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150
Yuxin Wang , Zhengxuan Song , Yutao Liu , Yang Chen , Jinping Li , Libo Li , Jia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779
Lihua Ma , Song Guo , Zhi-Ming Zhang , Jin-Zhong Wang , Tong-Bu Lu , Xian-Shun Zeng . Sensitizing photoactive metal–organic frameworks via chromophore for significantly boosting photosynthesis. Chinese Chemical Letters, 2024, 35(5): 108661-. doi: 10.1016/j.cclet.2023.108661
Xiaoyan Peng , Xuanhao Wu , Fan Yang , Yefei Tian , Mingming Zhang , Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251
Yunyu Zhao , Chuntao Yang , Yingjian Yu . A review on covalent organic frameworks for rechargeable zinc-ion batteries. Chinese Chemical Letters, 2024, 35(7): 108865-. doi: 10.1016/j.cclet.2023.108865
Hong Dong , Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307
Kang Wang , Qinglin Zhou , Weijin Li . Conductive metal-organic frameworks for electromagnetic wave absorption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100325-100325. doi: 10.1016/j.cjsc.2024.100325
(a, b) Asymmetric unit; (c-f) Coordination patterns of the L5- ligand; (g, h) Binary metal units; (i, j) Four-membered metal unit; (k, l) Six-membered ring; (m, n) 3D structure diagram; Symmetry codes: a: -y+1, x-y+1, z; b: -x+y, -x+1, z; c: -x+y+1/3, -x+2/3, z+2/3; d: -x+y+1/3, -x+2/3, z-1/3; f: x, y, z+1; h: -x+y, -x+1, z+1; i: -y+2/3, x-y+1/3, z-2/3; j: x, y, z-1; k: -x+y+2/3, -x+4/3, z+1/3; l: -y+1, x-y+1, z-1 for 1; a: -y+1, x-y, z; b: -x+y+1, -x+1, z; c: -x+y+1, -x+1, z-2; d: -x+y+2/3, -x+4/3, z-2/3; e: x, y, z-1; f: -y+2/3, x-y+1/3, z-2/3; g: -y+4/3, x-y+2/3, z+2/3; h: x, y, z+1; i: -x+y+1/3, -x+2/3, z+2/3; j: -y+1, x-y, z+2; k: -y-1, x-y, z-2; m: x, y, z-2; n: -x+y+2/3, -x+4/3, z+1/3 for 2.