Citation: Changqing MIAO, Fengjiao CHEN, Wenyu LI, Shujie WEI, Yuqing YAO, Keyi WANG, Ni WANG, Xiaoyan XIN, Ming FANG. Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192 shu

Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes

Figures(10)

  • Three new tetranuclear lanthanide-based complexes, namely [Ln4(dbm)6(L)2(μ2-OCH3)2(CH3OH)2] · xCH3OH [Ln=Eu (1), Tb (2), and Tm (3); x=3 (1), 0 (2), and 0 (3); Hdbm=dibenzoylmethane], were successfully designed and constructed by using a polydentate Schiff base (E)-2-hydroxy-3-methoxy-N'-(6-methoxy-pyridine-2-methylene)benzoylhydrazine (H2L) reacting with Ln(dbm)3·6H2O via solvothermal method. Single crystal X-ray diffraction analysis shows that the coordination units of1-3 comprise four Ln ions, six dbm- ligands, two L2- ligands, two μ2 -OCH3 ligands, and two coordinated CH3OH molecules. Four central Ln ions are interlinked by six μ2-O atoms displaying a linear tetranuclear structure. Solid fluorescence tests show that1 and2 exhibited fluorescence emission peaks of Ln(Ⅲ) ions at room temperature. In addition, antibacterial studies indicate that1-3 had stronger antibacterial activity than ligand H2L and Ln(Ⅲ) ions. The interaction between1-3 and calf thymus DNA (CT-DNA) was studied by ultraviolet spectroscopy, cyclic voltammetry, and fluorescence spectrometry. The results indicate that1-3 are primarily intercalated with CT-DNA.
  • 加载中
    1. [1]

      Wu Z L, Gu A L, Gao N, Cui H Y, Wang W M, Cui J Z. Solvent-dependent assembly and magnetic relaxation behaviors of[Cu4I3] cluster-based lanthanide MOFs: Acting as efficient catalysts for carbon dioxide conversion with propargylic alcohols.[J]. Inorg. Chem., 2020,59(20):15111-15119. doi: 10.1021/acs.inorgchem.0c02050

    2. [2]

      Wang W M, Wu Z L, Zhang Y X, Wei H Y, Gao H L, Cui J Z. Selfassembly of tetra-nuclear lanthanide clusters via atmospheric CO2 fixation: Interesting solvent-induced structures and magnetic relaxation conversions[J]. Inorg. Chem. Front., 2018,5(9):2346-2354. doi: 10.1039/C8QI00573G

    3. [3]

      Kabbur S M, Waghmare S D, Nadargi D Y, Sartale S D, Kambale R C, Ghodake U R, Suryavanshi S S. Magnetic interactions and electrical properties of Tb3+ substituted NiCuZn ferrites[J]. J. Magn. Magn Mater., 2018,473:99-108.

    4. [4]

      Wang W M, Zhang T T, Wang D, Cui J Z. Structures and magnetic properties of novel Ln(Ⅲ)-based pentanuclear clusters: magnetic refrigeration and single-molecule magnet behavior[J]. New J. Chem., 2020,44(44):19351-19359. doi: 10.1039/D0NJ04469E

    5. [5]

      Wang W M, Kang X M, Shen H Y, Wu Z L, Gao H L, Cui J Z. Modulating single molecule magnet behavior towards multiple magnetic relaxation processes through structural variation in Dy4 clusters[J]. Inorg. Chem. Front., 2018,5(8):1876-1885. doi: 10.1039/C8QI00214B

    6. [6]

      Fesatidou M, Petrou A, Athina G. Heterocycle compounds with antimicrobial activity[J]. Curr. Pharm. Des., 2020,26(8):867-904. doi: 10.2174/1381612826666200206093815

    7. [7]

      HUANG J, CUI Z N, LI Y, YANG X L. Bioactivities of copper complexes with Schiff bases[J]. Chin. J. Org. Chem., 2008,28(4):598-604.

    8. [8]

      Zhao N N, Yan L M, Zhao X Y, Chen X Y, Li A H, Zheng D, Zhou X, Dai X G, Xu F J. Versatile types of organic/inorganic nanohybrids: From strategic design to biomedical applications[J]. Chem. Rev., 2019,119(3):1666-1762. doi: 10.1021/acs.chemrev.8b00401

    9. [9]

      Zhou S L, Yin C W, Wang H, Zhu X C, Yang G S, Wang S W. Synthesis, characterization, and catalytic activities of rare-earth metal complexes with iminopyrrolyl ligands[J]. Inorg. Chem. Commun., 2011,14(8):1196-1200. doi: 10.1016/j.inoche.2011.04.015

    10. [10]

      WANG X, HOU X Y, FU F, WANG J J, LI H Y, REN Y X, ZHANG M L. Syntheses and structures of new Ln coordination polymers[Ce (tda)(ox)0.5(phen)]n with unusual 5-connected node topology.[J]. Chinese J. Inorg. Chem., 2011,27(1):174-178.

    11. [11]

      Wu J F, Li X L, Guo M, Zhao L, Zhang Y Q, Tang J K. Realization of toroidal magnetic moments in heterometallic 3d-4f metallocycles[J]. Chem. Commun., 2018,54(9):1065-1068. doi: 10.1039/C7CC09391H

    12. [12]

      Goura J, Colacio E, Herrera J M, Suturina E A, Kuprov I, Lan Y, Wernsdorfer W, Chandrasekhar V. Heterometallic Zn3Ln3 ensembles containing (μ6 CO3) ligand and triangular disposition of Ln3+ ions: Analysis of single-molecule toroic (SMT) and single-molecule magnet (SMM) behavior[J]. Chem.-Eur. J., 2017,23(65):16621-16636. doi: 10.1002/chem.201703842

    13. [13]

      CHEN A, LIU Z H. Progress and development direction in research of luminescent rare earth complex material[J]. Guangdong Chemical Industry, 2017,44(20):100-101. doi: 10.3969/j.issn.1007-1865.2017.20.046

    14. [14]

      Pallares R M, An D D, Tewari P, Wang E T, Abergel R J. Rapid detection of gadolinium-based contrast agents in urine with a chelated europium luminescent probe[J]. ACS Sens., 2020,5(5):1281-1286. doi: 10.1021/acssensors.0c00615

    15. [15]

      Wang W M, Kang X M, Shen H Y, Wu Z L, Gao H L, Cui J Z. Modulating single molecule magnet behavior towards multiple magnetic relaxation processes through structural variation in Dy4 clusters[J]. Inorg. Chem. Front., 2018,5(8):1876-1885. doi: 10.1039/C8QI00214B

    16. [16]

      WANG H J, XUE J X, LIU W, DIAO H P. Salicylaldehyde-4-aminosalicylic acid Schiff base and its rare earth complexes: Synthesis, characterization and bacteriostatic activity[J]. Chemical Research, 2017,28(3):326-330.

    17. [17]

      GAO M, YANG T L, LI H, ZHANG J J, MA Z Q. Synthesis of 3, 5diiodo-salicylalidehyde and 2, 6-diaminopyridine Schiff base and ctDNA cleavage by its metal complexes[J]. Chemistry, 2011,74(6):562-568.

    18. [18]

      Ajlouni A M, Abu-Salem Q, Taha Z A, Hijazi A K, Momani W A. Synthesis, characterization, biological activities and luminescent properties of lanthanide complexes with [2-thiophenecarboxylic acid, 2-(2-pyridinylmethylene)hydrazide] Schiff bases ligand.[J]. J. Rare Earths, 2016,34(10):986-993. doi: 10.1016/S1002-0721(16)60125-4

    19. [19]

      ZHANG Q L, FENG G W, WANG L, WANG Z, ZHU B X. Synthesis, crystal structure and antibacterial activity of Schiff base Ni(Ⅱ)complexes containing Schiff base and imidazole[J]. Chinese J. Inorg. Chem., 2014,30(5):1025-1030.

    20. [20]

      Alaudeen M, Abraham A, Radhakrishnan P K. Synthesis and antibacterial activity of rare earth perchlorate complexes of 4(2'hydroxynaphthylazo) antipyrine[J]. J. Chem. Sci., 1995,107:123-126. doi: 10.1007/BF02862981

    21. [21]

      TANG J H, WANG H Q, WANG Y Y, JIANG X J, LI H L, JIANG L, WANG S. Synthesis of 2-hydroxynaphthaldehyde and 2, 6-diaminopyridine Schiff base complex of thorium and bacteriostatic activity studies[J]. Applied Chemical Industry, 2014,43(1):31-34.

    22. [22]

      Tekahara P M, Frederick C A, Lippard S J. Crystal structure of the anticancer drug cisplatin bound to duplex DNA[J]. J. Am. Chem. Soc., 1996,118(49):12309-12321. doi: 10.1021/ja9625079

    23. [23]

      Wang W M, Xin X Y, Qiao N, Wu Z L, Li L, Zhou J Y. Self-assembly of octanuclear Ln (Ⅲ)-based clusters: Large magnetocaloric effect and highly efficient conversion of CO2[J]. Dalton. Trans., 2022,51(36):13957-13969. doi: 10.1039/D2DT01892F

    24. [24]

      Melby L R, Rose N J, Abramson E, Caris J C. Synthesis and fluorescence of some trivalent lanthanide complexes[J]. J. Am. Chem. Soc., 2002,86(23):5117-5125.

    25. [25]

      WEI W, LI S Y, WANG M J, MA C Y, HAO M M, SONG X M. Probiotic lactic acid bacteria to fluoroquinolones sensitivity detection method[J]. Food Science and Technology, 2013,38(3):22-26. doi: 10.3969/j.issn.1007-7561.2013.03.006

    26. [26]

      Kasuga N C, Sekino K, Ishikawa M, Honda A, Yokoyama M, Nakano S, Shimada N, Koumo C, Nomiya K. Synthesis, structural characterization and antimicrobial activities of 12 zinc(Ⅱ)complexes with four thiosemicarbazone and two semicarbazone ligands[J]. J. Inorg. Biochem., 2003,96(2/3):298-310.

    27. [27]

      Anwar M U, Dawe L N, Tandon S S, Bunge S D, Thompson L K. Polynuclear lanthanide (Ln) complexes of a tri-functional hydrazone ligand-mononuclear (Dy), dinuclear (Yb, Tm), tetranuclear (Gd), and hexanuclear (Gd, Dy, Tb) examples[J]. Dalton. Trans., 2013,42(21):7781-7794. doi: 10.1039/c3dt32732a

    28. [28]

      Yu H, Yang J X, Han J Q, Li P F, Hou Y L, Wang W M, Fang M. Tetranuclear lanthanide complexes showing magnetic refrigeration and single molecule magnet behavior[J]. New J. Chem., 2019,43(21):8067-8074. doi: 10.1039/C8NJ05109G

    29. [29]

      CAI D H, MO H W, HE L, LE X Y. Crystal structure, DNA binding properties and biological activities of a ternary mixed-ligand copper(Ⅱ) complex[J]. Chinese J. Inorg. Chem., 2021,37(1):74-84.

    30. [30]

      Kasuga N C, Sekino K, Koumo C, Shimada N, Ishikawa M, Nomiya K. Synthesis, structural characterization and antimicrobial activities of 4- and 6-coordinate nickel (Ⅱ) complexes with three thiosemicarbazones and semicarbazone ligands[J]. J. Inorg. Biochem., 2001,84(1/2):55-65.

    31. [31]

      Fjell C D, Jenssen H, Hilpert K, Cheung W A, Pante N, Hancock R E W, Cherkasov A. Identification of novel antibacterial peptides by chemoinformatics and machine learning[J]. Eur. J. Med. Chem., 2009,52(7):2006-2015. doi: 10.1021/jm8015365

    32. [32]

      LI X F, FENG X Q, ZHANG H W, YANG S. Synthesis, characterization and antibacterial activity of rare earth complexes of methacrylic acid and 8-hydroxyquinoline[J]. Chinese Journal of Rare Metals, 2015,39(1):62-67.

    33. [33]

      XIN X Y, CHEN F J, LI W Y, WANG J, YANG C, LI M, SHI Y, WANG W M. Crystal structure, fluorescence properties, and biological activity of Ln2 complexes based on Schiff base ligand[J]. Chinese J. Inorg. Chem., 2023,39(1):1-12.

    34. [34]

      Xin X Y, Qiao N, Chen C S. Crystal structure, fluorescence properties and biological activity of three μ2-O bridged Ln2(Ln=Sm, Eu and Tb) compounds[J]. Inorg. Chim. Acta, 2022,541121092. doi: 10.1016/j.ica.2022.121092

    35. [35]

      HOU L J, JI J, ZUO Y, LU S T, WANG X C, HU X M, HUANG X Q. Structure, magnetic property, bacteriostatic activity, and large magnetocaloric effect of a tetranuclear Gd (Ⅲ) based cluster[J]. Chinese J. Inorg. Chem., 2022,38(11):2267-2274. doi: 10.11862/CJIC.2022.216

    36. [36]

      Shao J, Ma Z Y, Li A, Liu Y H, Xie C Z, Qiang Z Y, Xu J Y. Thiosemicarbazone Cu (Ⅱ) and Zn (Ⅱ) complexes as potential anticancer agents: Syntheses, crystal structure, DNA cleavage, cytotoxicity and apoptosis induction activity[J]. J. Inorg. Biochem., 2014,136:13-23. doi: 10.1016/j.jinorgbio.2014.03.004

    37. [37]

      Chouaix A, Wicke S E, Turro C, John B, Kim R D, Wang D, Randolph P T. Ruthenium (Ⅱ) complexes of 1, 12-diazaperylene and their interactions with DNA[J]. Inorg. Chem., 2005,44(17):5996-6003. doi: 10.1021/ic0485965

    38. [38]

      Liu J, Zhang T X, Lu T B, Qu L H, Zhou H, Zhang Q L, Ji L N. DNAbinding and cleavage studies of macrocyclic copper(Ⅱ) complexes[J]. J. Inorg. Biochem., 2002,91(1):269-276. doi: 10.1016/S0162-0134(02)00441-5

    39. [39]

      LI H, JI L N, LI W S, XU Z H. Progress in electrochemical studies of deoxyribonucleic acid[J]. Chinese J. Inorg. Chem., 2003,19(3):225-231. doi: 10.3321/j.issn:1001-4861.2003.03.001

    40. [40]

      LI H, JIANG X, CHAO H, YE B H, JI L N. Electrochemical behavior of mononuclear and symmetrical binuclear ruthenium (Ⅱ) complexes on a platinum electrode[J]. Acta Chim. Sinica, 2000,58(7):825-830. doi: 10.3321/j.issn:0567-7351.2000.07.019

    41. [41]

      Anjomshoa M, Torkzadeh Mahani M. Competitive DNA binding studies between metal complexes and GelRed as a new and safe fluorescent DNA dye[J]. J. Fluoresc., 2016,26:1505-1510. doi: 10.1007/s10895-016-1850-z

    42. [42]

      Lakowicz J R, Weber G. Quenching of fluorescence by oxygen. Probe for structural fluctuations in macromolecules.[J]. Biochemistry, 1973,12(21):4161-4170. doi: 10.1021/bi00745a020

  • 加载中
    1. [1]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    2. [2]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    3. [3]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    4. [4]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    5. [5]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    6. [6]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    7. [7]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    8. [8]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    9. [9]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    10. [10]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    11. [11]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    12. [12]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    13. [13]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    14. [14]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    15. [15]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    16. [16]

      Long TANGYaxin BIANLuyuan CHENXiangyang HOUXiao WANGJijiang WANG . Syntheses, structures, and properties of three coordination polymers based on 5-ethylpyridine-2,3-dicarboxylic acid and N-containing ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1975-1985. doi: 10.11862/CJIC.20240180

    17. [17]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    18. [18]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    19. [19]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    20. [20]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

Metrics
  • PDF Downloads(0)
  • Abstract views(42)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return