Citation: Xiaoning TANG, Junnan LIU, Xingfu YANG, Jie LEI, Qiuyang LUO, Shu XIA, An XUE. Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191 shu

Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes

Figures(5)

  • Abstract: Here, we propose a green and self-crosslinking strategy to in-situ prepare a sodium carboxymethylcellulose (CMC) and sodium alginate (SA) layer on the Zn electrode (Zn@SA+CMC) via the superionic bonds between the carboxylate groups and Zn2+. Scanning electron microscopy (SEM) images confirm a porous structure of the SA+CMC layer. The functional effects of the gel layer are as follows. Firstly, the layer is rich in hydroxyl groups, which can be tightly adsorbed onto the Zn anode surface to form a protective layer and separate the Zn anode from the electrolyte. Secondly, the protective layer is a gel film, making it mechanically flexible, which can accommodate the volume change during Zn plating. Thirdly, the SA+CMC gel layer possesses zincophilicity, reduces interfacial resistance, lowers the nucleation energy barrier, and increases ionic conductivity, thereby promoting uniform Zn deposition and effectively inhibiting dendritic growth. As a result, the Zn@SA+CMC symmetrical cell sustained over 890 h of long-term stability at a high current density of 3 mA·cm-2 and the Zn@SA+CMC half cell could provide as high a Coulombic efficiency of 99.8% over 3 700 h (1 850 cycles). Furthermore, the Zn@SA+CMC||MnO2 full cell delivered a specific capacity of 185.1 mAh·g-1 at 0.3 A·g-1, maintaining stability for over 1 200 cycles.
  • 加载中
    1. [1]

      Liu J N, Luo Q Y, Xia S, Yang X F, Lei J, Sun Q, Chen X H, Shao J J, Tang X N, Zhou G M. A Cu-Ag double-layer coating strategy for stable and reversible Zn metal anodes[J]. J. Colloid Interf. Sci., 2024,665:163-171. doi: 10.1016/j.jcis.2024.03.126

    2. [2]

      Lu H Y, Hu J S, Wei X J, Zhang K Q, Xiao X, Zhao J X, Hu Q, Yu J, Zhou G M, Xu B G. A recyclable biomass electrolyte towards green zinc-ion batteries[J]. Nat. Commun., 2023,1(14)4435.

    3. [3]

      Li Y M, Wang Z W, Li W H, Zhang X Y, Yin C, Li K, Guo W, Zhang J P. Trinary nanogradients at electrode/electrolyte interface for lean zinc metal batteries[J]. Energy Storage Mater., 2023,61102873. doi: 10.1016/j.ensm.2023.102873

    4. [4]

      Yang Z F, Hu C, Zhang Q, Wu T Q, Xie C L, Wang H, Tang Y G, Ji X B, Wang H Y. Bulk-phase reconstruction enables robust zinc metal anodes for aqueous zinc-ion batteries[J]. Angew. Chem. Int. Ed., 2023,35(62)e202308017.

    5. [5]

      Cui H L, Zhang D C, Wu Z X, Zhe J X, Li P, Li C, Hou Y, Zhang R, Wang X Q, Jin X, Bai S C, Zhi C Y. Tailoring hydroxyl groups of organic phenazine anodes for high-performance and stable alkaline batteries[J]. Energy Environ. Sci., 2024,1(17):114-122.

    6. [6]

      Deng Y Q, Wang H F, Fan M H, Zhan B X, Zuo L J, Chen C, Yan L F. Nanomicellar electrolyte to control release ions and reconstruct hydrogen bonding network for ultrastable high-energy-density Zn-Mn battery[J]. J. Am. Chem. Soc., 2023,36(145):20109-20120.

    7. [7]

      Li Y, Peng X Y, Li X, Duan H, Xie S Y, Dong L B, Kang F Y. Functional ultrathin separators proactively stabilizing zinc anodes for zinc-based energy storage[J]. Adv. Mater., 2023,18(35)2300019.

    8. [8]

      Zheng Z Y, Guo S J, Yan M Y, Luo Y Z, Cao F F. A functional Janus Ag nanowires/bacterial cellulose separator for high‑performance dendrite-free zinc anode under harsh conditions[J]. Adv. Mater., 2023,47(35)2304667.

    9. [9]

      Xia S, Luo Q Y, Liu J N, Yang X F, Lei J, Shao J J, Tang X N. In situ spontaneous construction of zinc phosphate coating layer toward highly reversible zinc metal anodes[J]. Small, 2024. doi: 10.1002/smll.202310497

    10. [10]

      Luo Q Y, Xia S, Liu J N, Yang X F, Lei J, Shi Y, Chen X H, Shao J J, Tang X N, Zhou G M. In situ constructing a porous organic component-zincophilic Cu clusters layer on zinc anode for high performance aqueous zinc ion batteries[J]. Chem. Eng. J., 2024,494152789. doi: 10.1016/j.cej.2024.152789

    11. [11]

      Dong H B, Hu X Y, Liu R R, Ouyang M Z, He H Z, Wang T L, Gao X, Dai Y H, Zhang W, Liu Y Y, Zhou Y Q, He G J. Bio-inspired polyanionic electrolytes for highly stable zinc-ion batteries[J]. Angew. Chem. Int. Ed., 2023,41(62)e202311268.

    12. [12]

      Kim H J, Kim S, Heo K, Lim J H, Yashiro H, Myung S T. Nature of zinc-derived dendrite and its suppression in mildly acidic aqueous zinc-ion battery[J]. Adv. Energy Mater., 2022,2(13)2203189.

    13. [13]

      Liu J X, Song W H, Wang Y L, Wang S Z, Zhang T R, Cao Y L, Zhang S G, Xu C C, Shi Y Z, Niu J, Wang F. A polyamino acid with zincophilic chains enabling high-performance Zn anodes[J]. J. Mater. Chem. A, 2022,39(10):20779-20786.

    14. [14]

      Zheng J X, Wu Y C, Xie H X, Zeng Y, Liu W Q, Gandi A N, Qi Z B, Wang Z C, Liang H F. In situ alloying sites anchored on an amorphous aluminum nitride matrix for crystallographic reorientation of zinc deposits[J]. ACS Nano, 2023,1(17):337-345.

    15. [15]

      Han D L, Wu S, Zhang S, Deng Y, Cui C, Zhang L, Long Y, Li H, Tao Y, Weng Z, Yang Q H, Kang F. A corrosion-resistant and dendrite-free zinc metal anode in aqueous systems[J]. Small, 2020,29(16)2001736.

    16. [16]

      Wang L Y, Huang W W, Guo W B, Guo Z H, Chang C Y, Gao L, Pu X. Sn alloying to inhibit hydrogen evolution of Zn metal anode in rechargeable aqueous batteries[J]. Adv. Funct. Mater., 2021,1(32)2108533.

    17. [17]

      Li B, Xue J, Lv X, Zhang R C, Ma K X, Wu X W, Dai L, Wang L, He Z X. A facile coating strategy for high stability aqueous zinc ion batteries: Porous rutile nano-TiO2 coating on zinc anode[J]. Surf. Coat. Technol., 2021,421127367. doi: 10.1016/j.surfcoat.2021.127367

    18. [18]

      Yang Y, Liu C Y, Lv Z H, Yang H, Zhang Y F, Ye M H, Chen L B, Zhao J B, Li C C. Synergistic manipulation of Zn2+ ion flux and desolvation effect enabled by anodic growth of a 3D ZnF2 matrix for long-lifespan and dendrite-free Zn metal anodes[J]. Adv. Mater., 2021,11(33)2007388.

    19. [19]

      Li R T, Du Y X, Li Y H, He Z X, Dai L, Wang L, Wu X W, Zhang J J, Yi J. Alloying strategy for high-performance zinc metal anodes[J]. ACS Energy Lett., 2022,1(8):457-476.

    20. [20]

      Du J W, Zhao Y R, Chu X Y, Wang G, Neumann C, Xu H, Li X D, Löffler M, Lu Q Q, Zhang J X. A high-energy tellurium redox‑ amphoteric conversion cathode chemistry for aqueous zinc batteries[J]. Adv. Mater., 2024,36(19)2313621. doi: 10.1002/adma.202313621

    21. [21]

      Hieu L T, So S, Kim I T, Hur J. Zn anode with flexible β-PVDF coating for aqueous Zn-ion batteries with long cycle life[J]. Chem. Eng. J., 2021,411128584. doi: 10.1016/j.cej.2021.128584

    22. [22]

      Cao Q H, Gao Y, Pu J, Zhao X, Wang Y X, Chen J P, Guan C. Gradient design of imprinted anode for stable Zn-ion batteries[J]. Nat. Commun., 2023,1(14)641.

    23. [23]

      Qin Y, Li H F, Han C P, Mo F N, Wang X. Chemical welding of the electrode-electrolyte interface by Zn-metal-initiated in situ gelation for ultralong-life Zn-ion batteries[J]. Adv. Mater., 2022,44(34)2207118.

    24. [24]

      Liu H Y, Ye Q, Lei D, Hou Z D, Hua W, Huyan Y, Li N, Wei C G, Kang F Y, Wang J G. Molecular brush: An ion-redistributor to homogenize fast Zn2+ flux and deposition for calendar-life Zn batteries[J]. Energy Environ. Sci., 2023,4(16):1610-1619.

    25. [25]

      Zhu J B, Bie Z, Cai X X, Jiao Z Y, Wang Z T, Tao J C, Song W X, Fan H J. A molecular-sieve electrolyte membrane enables separator-free zinc batteries with ultralong cycle life[J]. Adv. Mater., 2022,43(34)2207209.

    26. [26]

      Wang Z, VahidMohammadi A, Ouyang L, Erlandsson J, Tai C W, Wågberg L, Hamedi M M. Layer-by-layer self-assembled nanostructured electrodes for lithium-ion batteries[J]. Small, 2020,6(17)2006434.

    27. [27]

      Dong X, Peng Y, Wang Y, Wang H W, Jiang C M, Huang C, Meng C G, Zhang Y. Hemimorphite/C interface layer with dual‑effect methodically redistricted Zn2+ deposition behavior for dendrite-free zinc metal anodes[J]. Energy Storage Mater., 2023,62102937. doi: 10.1016/j.ensm.2023.102937

    28. [28]

      Liu Q Q, Xia C F, He C H, Guo W, Wu Z P, Li Z, Zhao Q, Xia B Y. Dual-network structured hydrogel electrolytes engaged solid-state rechargeable Zn-air/iodide hybrid batteries[J]. Angew. Chem. Int. Ed., 2022,44(61)e202210567.

    29. [29]

      Tian C, Wang J L, Sun R X, Ali T, Wang H F, Xie B B, Zhong Y J, Hu Y. Improved interfacial ion migration and deposition through the chain-liquid synergistic effect by a carboxylated hydrogel electrolyte for stable zinc metal anodes[J]. Angew. Chem. Int. Ed., 2023,42(62)e202310970.

    30. [30]

      Peng H L, Wang C T, Wang D D, Song X X, Zhang C H, Yang J. Dynamic Zn/electrolyte interphase and enhanced cation transfer of sol electrolyte for all-climate aqueous zinc metal batteries[J]. Angew. Chem. Int. Ed., 2023,34(62)e202308068.

    31. [31]

      Tian Y, An Y L, Yang Y J, Xu B G. Robust nitrogen/selenium engineered MXene/ZnSe hierarchical multifunctional interfaces for dendrite-free zinc-metal batteries[J]. Energy Storage Mater., 2022,49:122-134. doi: 10.1016/j.ensm.2022.03.045

    32. [32]

      Meng Q, Zhao R Y, Cao P H, Bai Q X, Tang J J, Liu G D, Zhou X Y, Yang J. Stabilization of Zn anode via a multifunctional cysteine additive[J]. Chem. Eng. J., 2022,447137471. doi: 10.1016/j.cej.2022.137471

    33. [33]

      Duan J W, Dong J M, Cao R R, Yang H, Fang K K, Liu Y, Shen Z T, Li F M, Liu R, Li H L, Chen C. Regulated Zn plating and stripping by a multifunctional polymer-alloy interphase layer for stable Zn metal anode[J]. Adv. Sci., 2023,29(10)2303343.

    34. [34]

      Liu M Y, Yuan W T, Ma G Q, Qiu K Y, Nie X Y, Liu Y C, Shen S G, Zhang N. In-situ integration of a hydrophobic and fast-Zn2+-conductive inorganic interphase to stabilize Zn metal anodes[J]. Angew. Chem. Int. Ed., 2023,62e202304444. doi: 10.1002/anie.202304444

    35. [35]

      Cheng Y, Jiao Y C, Wu P Y. Manipulating Zn 002 deposition plane with zirconium ion crosslinked hydrogel electrolyte toward dendrite free Zn metal anodes[J]. Energy Environ. Sci., 2023,10(16):4561-4571.

    36. [36]

      Qiu T Y, Wang T H, Tang W S, Li Y Q, Li Y G, Lang X Y, Jiang Q, Tan H Q. Rapidly synthesized single-ion conductive hydrogel electrolyte for high-performance quasi-solid-state zinc-ion batteries[J]. Angew. Chem. Int. Ed., 2023,135e202312020. doi: 10.1002/ange.202312020

    37. [37]

      Sun M, Ji G C, Zheng J P. A hydrogel electrolyte with ultrahigh ionic conductivity and transference number benefit from Zn2+ "highways" for dendrite-free Zn-MnO2 battery[J]. Chem. Eng. J., 2023,463142535. doi: 10.1016/j.cej.2023.142535

    38. [38]

      Tian Y D, Chen S, Ding S Y, Chen Q W, Zhang J T. A highly conductive gel electrolyte with favorable ion transfer channels for long-lived zinc-iodine batteries[J]. Chem. Sci., 2023,2(14):331-337.

    39. [39]

      Gou L, Li J R, Liang K, Zhao S P, Li D L, Fan X Y. Bi-MOF modulating MnO2 deposition enables ultra-stable cathode-free aqueous zinc-ion batteries[J]. Small, 2023,17(19)2208233.

    40. [40]

      Mathew V, Sambandam B, Kim S, Kim S, Park S, Lee S, Alfaruqi M H, Soundharrajan V, Islam S, Putro D Y, Hwang J Y, Sun Y K, Kim J. Manganese and vanadium oxide cathodes for aqueous rechargeable zinc-ion batteries: A focused view on performance, mechanism, and developments[J]. ACS Energy Lett., 2020,7(5):2376-2400.

    41. [41]

      Wang S, Zhao X Q, Chen H, Guo J D, Liu R X, Yang D A. Ammonium ion pre-intercalated manganese dioxide with hydrogen bond for high-rate and stable zinc-ion batteries[J]. EcoMat, 2022,6(4)e12249.

  • 加载中
    1. [1]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    2. [2]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    3. [3]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    4. [4]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    5. [5]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    6. [6]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    7. [7]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    8. [8]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    9. [9]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    10. [10]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    11. [11]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    12. [12]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    13. [13]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    14. [14]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    15. [15]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    16. [16]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    17. [17]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    18. [18]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    19. [19]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    20. [20]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

Metrics
  • PDF Downloads(0)
  • Abstract views(147)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return