Citation: Junke LIU, Kungui ZHENG, Wenjing SUN, Gaoyang BAI, Guodong BAI, Zuwei YIN, Yao ZHOU, Juntao LI. Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189 shu

Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating

Figures(10)

  • The structural and interfacial instability of high-nickel layered cathode material (NCM811) were improved by the construction of inorganic-organic dual-coating. The dual-coating layer was composed of nano lithium metaluminate (LiAlO2, LAO) and cyclopolyacrylonitrile (cPAN). The LAO is a typical lithium-ion conductor, which can be used as a surface coating material to ensure rapid Li+ migration at the interface. In addition, the polyacrylonitrile (PAN) undergoes cross-linked cyclization reactions, resulting in the formation of a delocalized π bond and the formation of the cPAN with electronic conductivity after low-temperature heat treatment. The structure and composition of the dual-coating layer were carefully characterized, which indicates its uniform distribution on the surface of the NCM811 material. The as-obtained modified sample showed an electrochemical capacity retention of 84.8% after 150 cycles in the voltage range of 2.7-4.3 V (vs Li/Li+) at the current density of 1C (180 mA·g-1). Under the same test conditions, the capacity retention of pristine NCM811 was only 65.5%. The dual-coating layer can effectively protect the active material and could reduce the electrolyte decomposition on the material surface to a certain extent, leading to a decrease in interfacial impedance.
  • 加载中
    1. [1]

      Jiang M, Danilov D L, Eichel R A, Notten P H L. A review of degradation mechanisms and recent achievements for Ni-rich cathode-based Li-ion batteries[J]. Adv. Energy Mater., 2021,11(48)2103005. doi: 10.1002/aenm.202103005

    2. [2]

      Kim J, Lee H, Cha H, Yooh M, Park M, Cho J. Prospect and reality of Ni-rich cathode for commercialization[J]. Adv. Energy Mater., 2018,8(6)1702028. doi: 10.1002/aenm.201702028

    3. [3]

      Li Z Z, Huang X, Liang J N, Qin J L, Wang R, Cheng J G, Wang D L. Element doping induced microstructural engineering enhancing the lithium storage performance of high-nickel layered cathodes[J]. J. Energy Chem., 2023,77:461-468. doi: 10.1016/j.jechem.2022.11.002

    4. [4]

      Yoon M, Dong Y H, Hwang J, Sung J, Cha H Y, Ahn K, Huang Y M, Kang S J, Li J, Cho J. Reactive boride infusion stabilizes Ni-rich cathodes for lithium-ion batteries[J]. Nat. Energy, 2021,6:362-371. doi: 10.1038/s41560-021-00782-0

    5. [5]

      Nie W, Tang Y F, Cheng H W, Tian F, Sun Q C, Lu X G, Zhao Y F. Building negative-thermal-expansion protective layers on the grain boundary of Ni-rich cathodes enables safe and durable high voltage lithium-ion batteries[J]. Small, 2023,192306351. doi: 10.1002/smll.202306351

    6. [6]

      Hou P, Yin J M, Ding M, Huang J Z, Xu X J. Surface/interfacial structure and chemistry of high-energy nickel-rich layered oxide cathodes: Advances and perspectives[J]. Small, 2017,13(45)1701802. doi: 10.1002/smll.201701802

    7. [7]

      Ran Q W, Zhao H Y, Shu X H, Hu Y Z, Hao H, Shen Q Q, Liu W, Liu J T, Zhang M L, Li H, Liu X Q. Enhancing the electrochemical performance of Ni-rich layered oxide cathodes by combination of the gradient doping and dual-conductive layers coating[J]. ACS Appl. Energy Mater., 2019,2(5):3120-3130. doi: 10.1021/acsaem.8b02112

    8. [8]

      DENG H T, WANG C W, CHEN S X, PAN S Y, LÜ C, GUO M J, LIU J K, WEI G Z, ZHOU Y, LI J T. Boosting the electrochemical performance of high-voltage LiCoO2 cathode by a dual-coating strategy[J]. Chinese J. Inorg. Chem., 2022,38(8):1557-1566.  

    9. [9]

      Liu W, Li X F, Xiong D B, Hao Y C, Li J W, Kou H, Yan B, Li D J, Lu S G, Koo A, Adair K, Sun X L. Significantly improving cycling performance of cathodes in lithium-ion batteries: The effect of Al2O3 and LiAlO2 coatings on LiNi0.6Co0.2Mn0.2O2[J]. Nano Energy, 2017,11(10):111-120.

    10. [10]

      Wang J, Yuan Q, Ren Z X, Sun C H, Zhang J F, Wang R, Qian M M, Shi Q, Shao R W, Mu D B, Sun Y F, Xie J, Wu F, Tan G Q. Thermochemical cyclization constructs bridged dual-coating of Ni-rich layered oxide cathodes for high-energy Li-ion batteries[J]. Nano Lett., 2022,22(13):5221-5229. doi: 10.1021/acs.nanolett.2c01002

    11. [11]

      Liang Y, Liu H, Wang G X, Wang C, Li D B, Ni Y, Fan L Z. Heuristic design of cathode hybrid coating for power-limited sulfide-based all-solid-state lithium batteries[J]. Adv. Energy Mater., 2022,12(33)2201555. doi: 10.1002/aenm.202201555

    12. [12]

      Yang H P, Wu H H, Ge M Y, Li L J, Yuan Y F, Yao Q, Chen J, Xia L F, Zheng J M, Chen Z Y, Duan J F, Kisslinger K, Zeng X C, Lee W K, Zhang Q B, Lu J. Simultaneously dual modification of Ni-rich layered oxide cathode for high-energy lithium-ion batteries[J]. Adv. Funct. Mater., 2019,29(13)1808825. doi: 10.1002/adfm.201808825

    13. [13]

      MAO G H, XIAO F M, TANG R H, HUANG L, LI J, WANG Y. Effect of water washing and re-sintering treatment on microstructure and electrochemical properties of high nickel ternary material LiNi0.88Co0.07Al0.05O2[J]. Chinese J. Inorg. Chem., 2021,37(9):1649-1658.  

    14. [14]

      Zhang H L, Quan L, Shi F J, Li C Q, Liu H Q, Xu L H. Rheological behavior of amino-functionalized multi-walled carbon nanotube/polyacrylonitrile concentrated solutions and crystal structure of composite fibers[J]. Polymers, 2018,10(2)186. doi: 10.3390/polym10020186

    15. [15]

      Jung Y J, Suh M C, Lee H, Kim M, Lee S I, Chu S, Shim S C, Kwak J. Electrochemical insertion of lithium into polyacrylonitrile-based disordered carbons[J]. J. Electrochem. Soc., 1997,144(12):4279-4284. doi: 10.1149/1.1838178

    16. [16]

      Mo Y, Guo L J, Cao B K, Wang Y G, Zhang L, Jia X B, Chen Y. Correlating structural changes of the improved cyclability upon Nb-substitution in LiNi0.5Co0.2Mn0.3O2 cathode materials[J]. Energy Storage Mater., 2019,18:260-268. doi: 10.1016/j.ensm.2018.09.003

    17. [17]

      Shen Y B, Zhang X Y, Wang L C, Zhang D Y, Bao D, Yin D M, Wang L M, Cheng Y, Huang G. A universal multifunctional rare earth oxide coating to stabilize high-voltage lithium layered oxide cathodes[J]. Energy Storage Mater., 2023,56:155-164. doi: 10.1016/j.ensm.2023.01.015

    18. [18]

      Yoon M, Dong Y H, Hwang J, Sung J, Cha H Y, Ahn K H, Huang Y M, Kang S J, Li J, Cho J. Reactive boride infusion stabilizes Ni-rich cathodes for lithium-ion batteries[J]. Nat Energy, 2021,6(4):362-371. doi: 10.1038/s41560-021-00782-0

    19. [19]

      Jamil S, Wang G, Yang L, Xie X, Cao S, Liu H, Chang B B, Wang X Y. Suppressing H2–H3 phase transition in high Ni low Co layered oxide cathode material by dual modification[J]. J. Mater. Chem. A, 2020,8(40):21306-21316. doi: 10.1039/D0TA07965K

    20. [20]

      Ryu H H, Park K J, Yoon C S, Sun Y K. Capacity fading of Ni-rich Li(NixCoyMn1-x-y)O2 (0[J]. 6≤x≤0.95) cathodes for high-energy-density lithium-ion batteries: Bulk or surface degradation? Chem. Mater., 2018,30(3):1155-1163.

    21. [21]

      Liu Y, Tang L B, Wei H X, Zhang X H, He Z J, Li Y J, Zheng J C. Enhancement on structural stability of Ni-rich cathode materials by insitu fabricating dual-modified layer for lithium‑ion batteries[J]. Nano Energy, 2019,65104043. doi: 10.1016/j.nanoen.2019.104043

    22. [22]

      Sun N, Song Y J, Liu Q S, Zhao W, Zhang F, Ren L P, Chen M, Zhou Z N, Xu Z H, Lou S F, Kong F P, Wang J, Tong Y J, Wang J J. Surface-to-bulk synergistic modification of single crystal cathode enables stable cycling of sulfide based all solid-state batteries at 4[J]. 4 V. Adv. Energy Mater., 2022,12(29)2200682. doi: 10.1002/aenm.202200682

    23. [23]

      Tao F, Yan X, Liu J J, Chen L. Effects of PVP assisted Co3O4 coating on the electrochemical and storage properties of LiNi0.6Co0.2Mn0.2O2 at high cut off voltage[J]. Electrochim. Acta, 2016,210:548-556. doi: 10.1016/j.electacta.2016.05.060

    24. [24]

      Xu C L, Xiang W, Wu Z G, Xu Y D, Li Y C, Wang Y, Xiao Y, Guo X D, Zhong B H. Highly stabilized Ni-rich cathode material with Mo induced epitaxially grown nanostructured hybrid surface for high-performance lithium-ion batteries[J]. ACS Appl. Mater. Interfaces, 2019,11(18):16629-16638. doi: 10.1021/acsami.9b03403

    25. [25]

      Li Q, Li Z, Wu S J, Wang Z, Liu X G, Li W J, Li N, Wang J T, Zhuang W D. Utilizing diverse functions of zirconium to enhance the electrochemical performance of Ni-rich layered cathode materials[J]. Adv. Energy Mater., 2020,3(12):11741-11751.

    26. [26]

      Wang J P, Lu X B, Zhang Y C, Zhou J H, Wang J X, Xu S M. Grain size regulation for balancing cycle performance and rate capability of LiNi0.9Co0.055Mn0.045O2 single crystal nickel-rich cathode materials[J]. J. Energy Chem., 2022,65:681-687. doi: 10.1016/j.jechem.2021.06.017

    27. [27]

      Xu Q, Li X F, Sari H M K, Li W B, Liu W, Hao Y C, Qin J, Cao B, Xiao W, Xu Y, Wei Y, Kou L, Tian Z Y, Shao L, Zhang C, Sun X L. Surface engineering of LiNi0.8Mn0.1Co0.1O2 towards boosting lithium storage: Bimetallic oxides versus monometallic oxides[J]. Nano Energy, 2020,77105034. doi: 10.1016/j.nanoen.2020.105034

  • 加载中
    1. [1]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    2. [2]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    3. [3]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    4. [4]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    5. [5]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    6. [6]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    7. [7]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    8. [8]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    9. [9]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    10. [10]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    11. [11]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    12. [12]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    13. [13]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    14. [14]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    15. [15]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    16. [16]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    17. [17]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    18. [18]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    19. [19]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    20. [20]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

Metrics
  • PDF Downloads(1)
  • Abstract views(175)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return