Citation: Lulu DONG, Jie LIU, Hua YANG, Yupei FU, Hongli LIU, Xiaoli CHEN, Huali CUI, Lin LIU, Jijiang WANG. Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171 shu

Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology

  • Corresponding author: Hua YANG, yanghua_08@163.com
  • #共同第一作者。
  • Received Date: 14 May 2024
    Revised Date: 21 December 2024

Figures(9)

  • A cadmium-based coordination polymer [Cd4(L)4(1,4-bib)4]·2DMA (CP1) was synthesized under solvothermal conditions, where H2L=2 hydroxyterephthalic acid, 1, 4 bib=1, 4 bis(imidazol1 ylmethyl) benzene, and DMA=N,N-dimethylacetamide. The structure was characterized by thermogravimetric analysis, elemental analysis, infrared spectroscopy, and single-crystal X-ray diffraction. The single crystal structure shows that CP1 belongs to the orthorhombic system, the space group Pna21, Cd(Ⅱ) forms a 2D plane structure through L2-, and the 2D plane structure forms a 3D network with pcu topology through 1,4-bib. CP1 shows good fluorescence sensing performance and thermal stability and realizes efficient and sensitive detection of 2,4,6-trinitrophenol (TNP), Fe3+, and fluridine (FLU). The detection limits were 0.051 μmol·L-1 (TNP), 0.65 μmol·L-1 (Fe3+), and 0.14 μmol·L-1 (FLU), respectively. In addition, the mechanism of fluorescence detection of pollutant detection was explored and a portable test paper was successfully prepared. A portable test paper could not only selectively detect FLU, but also showed different fluorescence colors in different concentrations of FLU.
  • 加载中
    1. [1]

      CHEN D S, LU T, CHEN Y, YANG L. Two anthracene-based zirconium metal-organic frameworks with fcu and hcp topologies as versatile fluorescent sensors for detection of inorganic ions and nitroaromatics[J]. Spectroc. Acta Pt. A‒Molec. Biomolec. Spectr., 2023,300122916. doi: 10.1016/j.saa.2023.122916

    2. [2]

      YIN H Q, WANG X Y, YIN X B. Rotation restricted emission and antenna effect in single metal-organic frameworks[J]. J. Am. Chem. Soc., 2019,141(38):15166-15173. doi: 10.1021/jacs.9b06755

    3. [3]

      MOHAN B, KAMBOJ A, VIRENDER , SINGH K, PRIYANKA , SINGH G, POMBEIRO A J L, REN P. Metal-organic frameworks (MOFs) materials for pesticides, heavy metals, and drugs removal: Environmental safety[J]. Sep. Purif. Technol., 2023,310123175. doi: 10.1016/j.seppur.2023.123175

    4. [4]

      BAUZA A, TIDDO J, MOOIBROEK , FRONTERA A. Towards design strategies for anion-π interactions in crystal engineering[J]. CrystEngComm, 2016,18(1):10-23. doi: 10.1039/C5CE01813G

    5. [5]

      CALVO R, ZHANG K, PASSERA A, KATAYEV D. Facile access to nitroarenes and nitroheteroarenes using N-nitrosaccharin[J]. Nat. Commun., 2019,10(1)3410. doi: 10.1038/s41467-019-11419-y

    6. [6]

      LENG H R, LV Z Y, TAN H L, JIA Y H, YOU H. Degradation of nitrobenzene in 3D stack Z-scheme photoelectrocatalytic system: Degradation condition, pathway analysis and synergistic mechanism[J]. Process Saf. Environ. Protect., 2023,169:34-47. doi: 10.1016/j.psep.2022.10.075

    7. [7]

      XU N, ZHANG Q H, ZHANG G A. A carbazole-functionalized metal-organic framework for efficient detection of antibiotics, pesticides, and nitroaromatic compounds[J]. Dalton Trans., 2019,48(8):2683-2691. doi: 10.1039/C8DT04558E

    8. [8]

      NAGARKAR S S, DESAI A V, GHOSH S K. Engineering metal-organic frameworks for aqueous phase 2,4,6-trinitrophenol (TNP) sensing[J]. CrystEngComm, 2016,18(17):2994-3007. doi: 10.1039/C6CE00244G

    9. [9]

      MUKHERJEE D, PAL S C, DAS G, GORE K R, DAS M C. Devising robust hydrophobic MOFs and its membrane for ultra-sensitive aqueous phase detection of antibiotics and toxic nitro-explosives and adsorption of TNP[J]. J. Environ. Chem. Eng., 2023,11(5)110528. doi: 10.1016/j.jece.2023.110528

    10. [10]

      SUN N, ZHANG Y J, YIN L, XIONG G, YOU L X, HE Y K, SUN Y G. A water-stable Tb-MOF as a multifunctional luminescent sensor for Fe3+ and Cr2O72- in water[J]. Inorg. Chim. Acta, 2023,555121581. doi: 10.1016/j.ica.2023.121581

    11. [11]

      PAL S C, MUKHERJEE D, DAS M C. pH-Stable luminescent metal-organic frameworks for the selective detection of aqueous-phase Fe and Cr Ions[J]. Inorg. Chem., 2022,61(31):12396-12405. doi: 10.1021/acs.inorgchem.2c01793

    12. [12]

      YU C Y, SUN X D, ZOU L F, LI G H, ZHANG L R, LIU Y L. A pillar-layered Zn-LMOF with uncoordinated carboxylic acid sites: High performance for luminescence sensing Fe3+ and TNP[J]. Inorg. Chem., 2019,58(6):4026-4032. doi: 10.1021/acs.inorgchem.9b00204

    13. [13]

      XU H, DONG Y Y, WU Y H, REN W J, ZHAN T, WANG S L, GAO J K. An —OH group functionalized MOF for ratiometric Fe3+ sensing[J]. J. Solid State Chem., 2018,258:441-446. doi: 10.1016/j.jssc.2017.11.013

    14. [14]

      ALEXANDRINO D A M, ALMEIDA C M R, MUCHA A P, ALEXANDRINO M F C. Revisiting pesticide pollution: The case of fluorinated pesticides[J]. Environ. Pollut., 2022,292118315. doi: 10.1016/j.envpol.2021.118315

    15. [15]

      SARGENT R D, CARRILLO J, KREMEN C. Common pesticides disrupt critical ecological interactions[J]. Trends Ecol. Evol., 2023,38(3):207-210. doi: 10.1016/j.tree.2022.12.002

    16. [16]

      STRA E A, KELLY E, STANLEY D A. Self-reported assessment of compliance with pesticide rules[J]. Ecotox. Environ. Safe., 2023,254114692. doi: 10.1016/j.ecoenv.2023.114692

    17. [17]

      WANG Z P, WANG Y, LI X Y, JIA L F, YANG A Z, ZHAO W T, JIA Y, XU B Y, ZHAO H Q. Water-stable mixed-ligand Cd(Ⅱ) metal-organic frameworks as bis-color excited fluorescent sensors for the detection of vitamins and pesticides in aqueous solutions[J]. J. Mol. Struct., 2024,1305137699. doi: 10.1016/j.molstruc.2024.137699

    18. [18]

      YANG N, PU H, SUN D W. Developing a magnetic SERS nanosensor utilizing aminated Fe-based MOF for ultrasensitive trace detection of organophosphorus pesticides in apple juice[J]. Food Chem., 2024,446138846. doi: 10.1016/j.foodchem.2024.138846

    19. [19]

      DERBYSHIRE M, GARDINER P H E. Optimization of the simultaneous determination of Cr(Ⅲ) and Cr􀃱 by ion chromatography with chemiluminescence detection[J]. Anal. Chem., 1999,71(19):4203-4207. doi: 10.1021/ac9902751

    20. [20]

      NGUYEN V L, DARMAN M, IRELAND A, MICHEAL F. A high performance liquid chromatography fluorescence method for the analysis of both pyridoxal-5-phosphate and thiamine pyrophosphate in whole blood[J]. Clin. Chim. Acta, 2020,506:129-134. doi: 10.1016/j.cca.2020.03.026

    21. [21]

      WEN B, SHAN X Q, LIAN J. Separation of Cr(Ⅲ) and Cr􀃱 in river and reservoir water with 8-hydroxyquinoline immobilized polyacrylonitrile fiber for determination by inductively coupled plasma mass spectrometry[J]. Talanta, 2002,56(4):681-687. doi: 10.1016/S0039-9140(01)00632-4

    22. [22]

      ZHAO Y Z, HAO H Y, WANG H B, SUN L H, ZHANG N, ZHANG X, LIANG J. Antibiotic quantitative fluorescence chemical sensor based on Zn-MOF aggregation-induced emission characteristics[J]. Microchem. J., 2023,190108626. doi: 10.1016/j.microc.2023.108626

    23. [23]

      XUE J J, YANG F, JIN J, LI Y, WU D, YANGg G P, WANG Y Y. Design and synthesis of four newly water-stable Pb-based heterometallic organic frameworks: How do the second metals (Zn, Cd, Co, and Mn) optimize their fluorescent and catalytic properties[J]. Cryst. Growth Des., 2022,22(4):2628-2636. doi: 10.1021/acs.cgd.2c00073

    24. [24]

      ZHAN Y J, LIU M Y, ZHOU S, YAN Z Y, TIAN J S, ZHANG Q J, YAO Z Y. Smartphone-assisted ratiometric sensing platform for on-site tetracycline determination based on europium functionalized luminescent Zr-MOF[J]. Food Chem., 2023,425136449. doi: 10.1016/j.foodchem.2023.136449

    25. [25]

      LI S, ZHENG Y, LIU G C, LI X H, ZHANG Z, WANG X L. New two fold interpenetrating 3D polyoxovanadate-based metal-organic framework as bifunctional catalyst for the removal of 2-chloroethyl ethyl sulfide and phenolic compounds[J]. Polyoxometalates, 2024,3(3)9140061.

    26. [26]

      CHONGDAR S, MONDAL U, CHAKRABORTY T, BANERJEE P, BHAUMIK A. A Ni-MOF as fluorescent/electrochemical dual probe for ultrasensitive detection of picric acid from aqueous media[J]. ACS Appl. Mater. Interfaces, 2023,15(11):14575-14586.

    27. [27]

      HAO G N W, PENG L P, CHEN Y, LIU Y S, LI C L, ZHANG H, YANG W. A novel ratiometric fluorescence sensor based on lanthanide-functionalized MOF for Hg2+ detection[J]. Talanta, 2022,250123710. doi: 10.1016/j.talanta.2022.123710

    28. [28]

      WANDERLEY M M, WANG C, WU C D, LIN W B. A chiral porous metal-organic framework for highly sensitive and enantioselective fluorescence sensing of amino alcohols[J]. J. Am. Chem. Soc., 2012,134:9050-9053.

    29. [29]

      HU D C, LIN X R, GAO Q, ZHANG J M, FENG H, LIU J C. Synthesis of novel coordination polymer Cd-MOF and fluorescence recognition of tryptophan[J]. J. Mol. Struct., 2023,1284135389. doi: 10.1016/j.molstruc.2023.135389

    30. [30]

      RATH B B, KOTTILIL D, JI W, VITTAL J J. Enhancement in two-photon absorption and photoluminescence in single crystals of Cd(Ⅱ) metal organic frameworks[J]. ACS Appl. Mater. Interfaces, 2023,15(22):26939-26945.

    31. [31]

      WANG L B, WANG J J, YUE E L, LI J F, BAI C, TANG L, WANG X, HOU X Y, ZHANG Y Q. Fluorescence sensing and anti-counterfeiting application based a heterometallic Cd(Ⅱ)-Na(Ⅰ)-MOF[J]. J. Solid State Chem., 2022,309123026.

    32. [32]

      Li Y Z, KRISHN R, XU F, ZHANG W F, SUI Y W, HOU L, WANG Y Y, ZHU Z H. A novel C2H2-selective microporous Cd-MOF for C2H2/C2H4 and C2H2/CO2 separation[J]. Sep. Purif. Technol., 2023,306122678.

    33. [33]

      XIA J, ZHAO B, WANG H S, SHI W, MA Y, SONG H B, CHENG P, LIAO D Z, YAN S P. Two-and three-dimensional lanthanide complexes: Synthesis, crystal structures, and properties[J]. Inorg. Chem., 2007,46:3450-3458.

    34. [34]

      ZHANG L Y, LIU G F, ZHENG S L, YE B H, ZHANG X M, CHEN X M. Helical ribbons of cadmium(Ⅱ) and zinc(Ⅱ) dicarboxylates with bipyridyl-like chelates-Syntheses, crystal structures and photoluminescence[J]. Eur. J. Inorg. Chem., 2003:2965-2971.

    35. [35]

      AN Y Y, LU L P, ZHU M L. One Cd-MOF as a multi-responsive fluorescent probe for sensing Fe(Ⅲ) and Cr􀃱[J]. Chinese J. Inorg. Chem., 2023,39(05):939-946.

    36. [36]

      WU J, LI B H, ZHONG H R, QIU S W, LIANG Y W, ZHUANG X Y, SINGH A, KUMAR A. Fluorescence sensing and photocatalytic properties of a 2D stable and biocompatible Zn(Ⅱ)-based polymer[J]. J. Mol. Struct, 2018,1158:264-270.

    37. [37]

      DANG S, MA E, SUN Z M, ZHANG H J. A layer-structured Eu-MOF as a highly selective fluorescent probe for Fe3+ detection through a cation-exchange approach[J]. J. Mater. Chem., 2012,22(33):16920-16926.

    38. [38]

      CHEN Z, SUN Y W, ZHANG L L, SUN D, LIU F L, MENG Q G, WANG R M, SUN D F. A tubular europium-organic framework exhibiting selective sensing of Fe3+ and Al3+ over mixed metal ions[J]. Chem. Commun., 2013,49:11557-11559.

    39. [39]

      LIN X Z, TIAN D, GAO Q, SUN H W, XU J, BU X H. A chiral lanthanide metal-organic framework for selective sensing of Fe(Ⅲ) ions[J]. Dalton Trans., 2016,45:1040-1046.

    40. [40]

      LIU Y, LIU Y N, PARK S J, ZHANG Y F, KIM T, CHAE S, PARK M, KIM H Y. One-step synthesis of robust nitrogen-doped carbon dots: Acid-evoked fluorescence enhancement and their application in Fe3+ detection[J]. J. Mater. Chem. A, 2015,3:17747-17754.

    41. [41]

      ORELMA H, TEERINEN T, JOHANSSON L S, HOLAPPA S, LAINE J. CMC-modified cellulose biointerface for antibody conjugation[J]. Biomacromolecules, 2012,13(4):1051-1058.

  • 加载中
    1. [1]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    2. [2]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    3. [3]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    4. [4]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    5. [5]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    6. [6]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    7. [7]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    8. [8]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    9. [9]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    10. [10]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    11. [11]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    12. [12]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    13. [13]

      Yan XUSuzhi LIYan LILushun FENGWentao SUNXinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226

    14. [14]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    15. [15]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    16. [16]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    17. [17]

      Zhaodong WANGIn situ synthesis, crystal structure, and magnetic characterization of a trinuclear copper complex based on a multi-substituted imidazo[1,5-a]pyrazine scaffold. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 597-604. doi: 10.11862/CJIC.20240268

    18. [18]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    19. [19]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    20. [20]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

Metrics
  • PDF Downloads(0)
  • Abstract views(30)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return