Citation: Yang WANG, Xiaoqin ZHENG, Yang LIU, Kai ZHANG, Jiahui KOU, Linbing SUN. Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165 shu

Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance

Figures(13)

  • A simple strategy was adopted to prepare single-atom catalysts (SACs) using mesoporous silica KIT- 6 (TOK) without templating agent removal as a carrier and utilizing the confined space between the templating agent and the silica wall. After the Mn-containing precursor was introduced into the confined space of TOK by solid-phase milling, Mn SACs can be rapidly generated during the calcination. Density functional theory calculations and experimental data indicate that the Mn atoms are anchored by Si—OH groups on the carriers and exist as Mn—O—Si. The obtained Mn SACs were applied to the electrocatalytic oxygen evolution reaction, and the experimental results show that the Mn SACs exhibit better catalytic performance than the comparison samples synthesized in a carrier without confined space.
  • 加载中
    1. [1]

      Cheng N C, Stambula S, Wang D, Banis M N, Liu J, Riese A, Xiao B W, Li R Y, Sham T K, Liu L M, Botton G A, Sun X L. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction[J]. Nat. Commun., 2016,7(1):13638-13647. doi: 10.1038/ncomms13638

    2. [2]

      Di J, Chen C, Yang S Z, Chen S M, Duan M L, Xiong J, Zhu C, Long R, Hao W, Chi Z, Chen H L, Weng Y X, Xia J X, Song L, Li S Z, Li H M, Liu Z. Isolated single atom cobalt in Bi3O4Br atomic layers to trigger efficient CO2 photoreduction[J]. Nat. Commun., 2019,10:2840-2847. doi: 10.1038/s41467-019-10392-w

    3. [3]

      Han G K, Zhang X, Liu W, Zhang Q H, Wang Z Q, Cheng J, Yao T, Gu L, Du C Y, Gao Y Z, Yin G P. Substrate strain tunes operando geometric distortion and oxygen reduction activity of CuN2C2 single-atom sites[J]. Nat. Commun., 2021,12(1):6335-6344. doi: 10.1038/s41467-021-26747-1

    4. [4]

      Lee B H, Park S, Kim M, Sinha A K, Lee S C, Jung E, Chang W J, Lee K S, Kim J H, Cho S P, Kim H, Nam K T, Hyeon T. Reversible and cooperative photoactivation of single-atom Cu/TiO2 photocatalysts[J]. Nat. Mater., 2019,18(6):620-626. doi: 10.1038/s41563-019-0344-1

    5. [5]

      Wei S J, Li A, Liu J C, Li Z, Chen W X, Gong Y, Zhang Q H, Cheong W C, Wang Y, Zheng L R, Xiao H, Chen C, Wang D S, Peng Q, Gu L, Han X D, Li J, Li Y D. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms[J]. Nat. Nanotechnol., 2018,13(9):856-861. doi: 10.1038/s41565-018-0197-9

    6. [6]

      Tang J, Robichaux M A, Wu K L, Pei J Q, Nguyen N T, Zhou Y B, Wensel T G, Xiao H. Single-atom fluorescence switch: A general approach toward visible-light-activated dyes for biological imaging[J]. J. Am. Chem. Soc., 2019,141(37):14699-14706. doi: 10.1021/jacs.9b06237

    7. [7]

      Jiao L, Zhang R, Wan G, Yang W J, Wan X, Zhou H, Shui J L, Yu S H, Jiang H L. Nanocasting SiO2 into metal‑organic frameworks imparts dual protection to high-loading Fe single-atom electrocatalysts[J]. Nat. Commun., 2020,11(1):2831-2838. doi: 10.1038/s41467-020-16715-6

    8. [8]

      He X H, Deng Y C, Zhang Y, He Q, Xiao D Q, Peng M, Zhao Y, Zhang H, Luo R C, Gan T, Ji H B, Ma D. Mechanochemical kilogram-scale synthesis of noble metal single-atom catalysts[J]. Cell Rep. Phys. Sci., 2020,1(1):100004-100016. doi: 10.1016/j.xcrp.2019.100004

    9. [9]

      Sui J F, Liu H, Hu S J, Sun K, Wan G, Zhou H, Zheng X, Jiang H L. A general strategy to immobilize single-atom catalysts in metal-organic frameworks for enhanced photocatalysis[J]. Adv. Mater., 2021,34(6)2109203.

    10. [10]

      Zhou H, Zhao Y F, Gan J, Xu J, Wang Y, Lv H W, Fang S, Wang Z Y, Deng Z L, Wang X Q, Liu P G, Guo W X, Mao B Y, Wang H, Yao T, Hong X, Wei S Q, Duan X Z, Luo J, Wu Y. Cation-exchange induced precise regulation of single copper site triggers room‑ temperature oxidation of benzene[J]. J. Am. Chem. Soc., 2020,142(29):12643-12650. doi: 10.1021/jacs.0c03415

    11. [11]

      Liu Y W, Wu X, Li Z, Zhang J, Liu S X, Liu S J, Gu L, Zheng L R, Li J, Wang D S, Li Y D. Fabricating polyoxometalates-stabilized single-atom site catalysts in confined space with enhanced activity for alkynes diboration[J]. Nat. Commun., 2021,12(1):4205-4214. doi: 10.1038/s41467-021-24513-x

    12. [12]

      Zheng X Q, Zhang K, Wang Y, Liu Y, Peng S S, Shao X B, Kou J, Sun L B. Construction of nickel single atoms by using the inherent confined space in template-occupied mesoporous silica[J]. Inorg. Chem., 2024,63(18):8312-8319. doi: 10.1021/acs.inorgchem.4c00626

    13. [13]

      Gu M X, Zheng X Q, Peng S S, Qi S C, Liu X Q, Sun L B. Fabrication of Fe single atoms by utilizing the inherent confined space for phenol hydroxylation[J]. ACS Sustain. Chem. Eng., 2023,11(20):7844-7850. doi: 10.1021/acssuschemeng.3c00856

    14. [14]

      Song W Q, Xiao C X, Ding J, Huang Z C, Yang X Y, Zhang T, Mitlin D, Hu W B. Review of carbon support coordination environments for single metal atom electrocatalysts (SACs)[J]. Adv. Mater., 2023,36(1):2301477-2301531.

    15. [15]

      Jeong H, Shin S, Lee H. Heterogeneous atomic catalysts overcoming the limitations of single-atom catalysts[J]. ACS Nano, 2020,14(11):14355-14374. doi: 10.1021/acsnano.0c06610

    16. [16]

      Sarma B B, Plessow P N, Agostini G, Concepción P, Pfänder N, Kang L, Wang F R, Studt F, Prieto G. Metal-specific reactivity in single-atom catalysts: CO oxidation on 4d and 5d transition metals atomically dispersed on MgO[J]. J. Am. Chem. Soc., 2020,142(35):14890-14902. doi: 10.1021/jacs.0c03627

    17. [17]

      Zhu Z J, Yin H J, Wang Y, Chuang C H, Xing L, Dong M Y, Lu Y R, Casillas Garcia G, Zheng Y L, Chen S, Dou Y H, Liu P, Cheng Q L, Zhao H J. Coexisting single-atomic Fe and Ni sites on hierarchically ordered porous carbon as a highly efficient ORR electrocatalyst[J]. Adv. Mater., 2020,32(42)2004670. doi: 10.1002/adma.202004670

    18. [18]

      Cao L L, Luo Q Q, Liu W, Lin Y K, Liu X K, Cao Y J, Zhang W, Wu Y, Yang J L, Yao T, Wei S Q. Identification of single-atom active sites in carbon-based cobalt catalysts during electrocatalytic hydrogen evolution[J]. Nat. Catal., 2018,2(2):134-141. doi: 10.1038/s41929-018-0203-5

    19. [19]

      Yang Y, Zhang W Y, Tan X H, Jiang K R, Zhai S L, Li Z. Atomic-level reactive sites for electrocatalytic nitrogen reduction to ammonia under ambient conditions[J]. Coord. Chem. Rev., 2023,489:215196-215218. doi: 10.1016/j.ccr.2023.215196

    20. [20]

      Wang M K, Hu Y, Pu J M, Zi Y, Huang W C. Emerging Xene-based single-atom catalysts: Theory, synthesis and catalytic applications[J]. Adv. Mater., 2023,36(3):2303492-2303599.

    21. [21]

      Zheng Y, Qiao S Z. Metal-organic framework assisted synthesis of single-atom catalysts for energy applications[J]. Natl. Sci. Rev., 2018,5(5):626-627. doi: 10.1093/nsr/nwy010

    22. [22]

      Gu M X, Gao L P, Peng S S, Qi S C, Shao X B, Liu X Q, Sun L B. Transition metal single atoms constructed by using inherent confined space[J]. ACS Nano, 2023,17(5):5025-5032. doi: 10.1021/acsnano.2c12817

    23. [23]

      Liu Y W, Li Z, Yu Q Y, Chen Y F, Chai Z W, Zhao G F, Liu S J, Cheong W C, Pan Y, Zhang Q H, Gu L, Zheng L R, Wang Y, Lu Y, Wang D S, Chen C, Peng Q, Liu Y Q, Liu L M, Chen J S, Li Y D. A general strategy for fabricating isolated single metal atomic site catalysts in Y zeolite[J]. J. Am. Chem. Soc., 2019,141(23):9305-9311. doi: 10.1021/jacs.9b02936

    24. [24]

      Jiao L, Jiang H L. Metal-organic-framework-based single-atom catalysts for energy applications[J]. Chem, 2019,5(4):786-804. doi: 10.1016/j.chempr.2018.12.011

    25. [25]

      Hülsey M J, Zhang B, Ma Z R, Asakura H, Do D A, Chen W, Tanaka T, Zhang P, Wu Z L, Yan N. In situ spectroscopy-guided engineering of rhodium single-atom catalysts for CO oxidation[J]. Nat. Commun., 2019,10(1):1330-1340. doi: 10.1038/s41467-019-09188-9

    26. [26]

      Qiao B T, Liang J X, Wang A Q, Xu C Q, Li J, Zhang T, Liu J Y. Ultrastable single-atom gold catalysts with strong covalent metal- support interaction (CMSI)[J]. Nano Res., 2015,8(9):2913-2924. doi: 10.1007/s12274-015-0796-9

    27. [27]

      Zhao S, Chen F, Duan S B, Shao B, Li T B, Tang H L, Lin Q Q, Zhang J Y, Li L, Huang J H, Bion N, Liu W, Sun H, Wang A Q, Haruta M, Qiao B T, Li J, Liu J Y, Zhang T. Remarkable active-site dependent H2O promoting effect in CO oxidation[J]. Nat. Commun., 2019,10(1):3824-3834. doi: 10.1038/s41467-019-11871-w

    28. [28]

      Ge X, Su G R, Che W, Yang J, Zhou X, Wang Z Y, Qu Y T, Yao T, Liu W, Wu Y. Atomic filtration by graphene oxide membranes to access atomically dispersed single atom catalysts[J]. ACS Catal., 2020,10(18):10468-10475. doi: 10.1021/acscatal.0c02203

    29. [29]

      Yang Z K, Chen B X, Chen W X, Qu Y T, Zhou F Y, Zhao C M, Xu Q, Zhang Q H, Duan X Z, Wu Y. Directly transforming copper􀃬 oxide bulk into isolated single-atom copper sites catalyst through gas-transport approach[J]. Nat. Commun., 2019,10(1):3734-3741. doi: 10.1038/s41467-019-11796-4

    30. [30]

      Yang Z K, Zhao C M, Qu Y T, Zhou H, Zhou F Y, Wang J, Wu Y, Li Y D. Trifunctional self-supporting cobalt-embedded carbon nanotube films for ORR, OER, and HER triggered by solid diffusion from bulk metal[J]. Adv. Mater., 2019,31(12)1808043. doi: 10.1002/adma.201808043

    31. [31]

      Zhang J Q, Zhao Y F, Guo X, Chen C, Dong C L, Liu R S, Han C P, Li Y D, Gogotsi Y, Wang G X. Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction[J]. Nat. Catal., 2018,1(12):985-992. doi: 10.1038/s41929-018-0195-1

    32. [32]

      Zhang L H, Han L L, Liu H X, Liu X J, Luo J. Potential-cycling synthesis of single platinum atoms for efficient hydrogen evolution in neutral media[J]. Angew. Chem. Int. Ed., 2017,56(44):13694-13698. doi: 10.1002/anie.201706921

    33. [33]

      Zhang L Z, Fischer J M T A, Jia Y, Yan X C, Xu W C, Wang X C, Chen J, Yang D J, Liu H W, Zhuang L Z, Hankel M, Searles D J, Huang K K, Feng S H, Brown C L, Yao X D. Coordination of atomic Co-Pt coupling species at carbon defects as active sites for oxygen reduction reaction[J]. J. Am. Chem. Soc., 2018,140(34):10757-10763. doi: 10.1021/jacs.8b04647

    34. [34]

      Xiang J Q, Zhao H Y, Chen K, Yang X, Chu K. Electrocatalytic nitrite reduction to ammonia on an Rh single‑atom catalyst[J]. J. Colloid Interface Sci., 2024,659:432-438. doi: 10.1016/j.jcis.2024.01.013

    35. [35]

      Liu M H, Zhang J, Su H, Jiang Y L, Zhou W L, Yang C Y, Bo S W, Pan J, Liu Q H. In situ modulating coordination fields of single-atom cobalt catalyst for enhanced oxygen reduction reaction[J]. Nat. Commun., 2024,15(1):1675-1685. doi: 10.1038/s41467-024-45990-w

    36. [36]

      Pirez C, Caderon J M, Dacquin J P, Lee A F, Wilson K. Tunable KIT-6 mesoporous sulfonic acid catalysts for fatty acid esterification[J]. ACS Catal., 2012,2(8):1607-1614. doi: 10.1021/cs300161a

  • 加载中
    1. [1]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    2. [2]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    3. [3]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023

    4. [4]

      Shiqian WEIXinyu TIANHong LIUMaoxia CHENFan TANGQiang FANWeifeng FANYu HU . Oxygen reduction reaction/oxygen evolution reaction catalytic performances of different active sites on nitrogen-doped graphene loaded with iron single atoms. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1776-1788. doi: 10.11862/CJIC.20250102

    5. [5]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    6. [6]

      Wuxin BaiQianqian ZhouZhenjie LuYe SongYongsheng Fu . Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305041-0. doi: 10.3866/PKU.WHXB202305041

    7. [7]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    8. [8]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    9. [9]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    10. [10]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    11. [11]

      Weicheng FengJingcheng YuYilan YangYige GuoGeng ZouXiaoju LiuZhou ChenKun DongYuefeng SongGuoxiong WangXinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013

    12. [12]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    13. [13]

      Chunling QinShuang ChenHassanien GomaaMohamed A. ShenashenSherif A. El-SaftyQian LiuCuihua AnXijun LiuQibo DengNing Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059

    14. [14]

      Yajuan XingHui XueJing SunNiankun GuoTianshan SongJiawen SunYi-Ru HaoQin Wang . Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(3): 2304046-0. doi: 10.3866/PKU.WHXB202304046

    15. [15]

      Kai PENGXinyi ZHAOZixi CHENXuhai ZHANGYuqiao ZENGJianqing JIANG . Progress in the application of high-entropy alloys and high-entropy ceramics in water electrolysis. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1257-1275. doi: 10.11862/CJIC.20240454

    16. [16]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    17. [17]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    18. [18]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    19. [19]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    20. [20]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

Metrics
  • PDF Downloads(8)
  • Abstract views(895)
  • HTML views(226)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return