一例简单的席夫碱探针对次氯酸根的荧光开启识别及生物成像应用

闫金龙 吴伟娜 王元

引用本文: 闫金龙, 吴伟娜, 王元. 一例简单的席夫碱探针对次氯酸根的荧光开启识别及生物成像应用[J]. 无机化学学报, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154 shu
Citation:  Jinlong YAN, Weina WU, Yuan WANG. A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application[J]. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154 shu

一例简单的席夫碱探针对次氯酸根的荧光开启识别及生物成像应用

    通讯作者: 吴伟娜,E-mail: wuwn08@hpu.edu.cn
  • 基金项目:

    河南省自然科学基金 242300420190

    河南省科技攻关项目 242102320058

    河南省教育厅高等学校重点科研项目 24A150010

    河南省高校基本科研业务费项目 NSFRF240809

    河南省高校基本科研业务费项目 NSFRF230402

    河南理工大学“双一流”创建工程项目 AQ20230745

    河南理工大学“双一流”创建工程项目 AQ20230754

    焦作师范高等专科学校高层次科研培育基金项目 GJ-2023-06

摘要: 通过缩合反应制备了一例简单的席夫碱探针苯并色烯-2-甲醛缩二氨基马来腈(1),使用核磁共振氢谱/碳谱、质谱和单晶X射线衍射等手段表征了探针的结构。荧光测试表明,探针1自身无荧光,而次氯酸根(ClO-)能够特异性打开探针1在530 nm处的强荧光发射。探针1对ClO-响应灵敏且在数秒内完成。通过质谱和理论计算手段研究了ClO-介导的探针1的分解反应机理。此外,该探针还可用于活细胞、斑马鱼和拟南芥中ClO-的荧光成像。

English

  • 次氯酸(HClO)/次氯酸盐(ClO-)在日常生活中广原平衡等众多生理过程发挥着重要作用[2]。但ClO-泛用作漂白剂和消毒剂[1]。同时,ClO-也是一种重要浓度失衡会引发动脉粥样硬化、肺损伤、神经元变的生物活性氧物种(ROS),在细胞信号传导和氧化还性、关节炎甚至癌症等多种恶性疾病[3]。因此,生物样本中ClO-的实时检测具有重要意义,有助于理解ClO-的生理功能及其在相关疾病中扮演的角色。

    常用的检测ClO-的方法包括高效液相色谱(HPLC)、表面增强拉曼光谱(SERS)、毛细管电泳(CE)、电化学分析和紫外可见光谱等,其中基于荧光探针的荧光分析技术因其灵敏度高、响应快速和实时无损成像等诸多优点受到广泛关注[4]。近年来,针对ClO-的荧光探针取得了一定进展,设计策略通常是以硫族化合物[5-8]、C=C[9-11]、螺内酰胺[12-14]、脲[15-17]和C=N[18-27]等为识别基团,利用ClO-的强氧化性对识别基团进行氧化而引起探针的荧光变化,达到检测的目的。其中,以C=N为官能团的席夫碱荧光探针制备简便且易结晶纯化,因而备受青睐[23]。席夫碱荧光探针由于亚胺异构化或光诱导电子转移(PET)过程,通常荧光微弱;ClO-的氧化作用能够导致席夫碱分解产生相应的荧光活性醛或者酸[24, 26],便于建立ClO-的定量分析方法。

    苯并色烯衍生物是一类重要的含氧杂环化合物,在配位化学、发光材料和荧光探针等领域有广泛的应用[28-29]。我们使用苯并色烯‐2‐甲醛(1a)和二氨基马来腈缩合制备了席夫碱探针1(图 1),并通过单晶X射线衍射等手段表征了其结构。探针1在近纯水体系中荧光微弱,其与ClO-作用后在530 nm处的荧光发射显著增强。探针1对ClO-检测选择性优异、灵敏度高且响应快速。通过质谱和理论计算推测了探针对ClO-的传感机理。此外,探针1还成功用于活细胞、斑马鱼和拟南芥中ClO-的荧光分析。

    图 1

    图 1.  探针1的合成路线图
    Figure 1.  Synthetic route of probe 1

    用于合成的起始原料和溶剂均是商业购买直接使用,未进行纯化。化合物 1a参考文献方法合成[29]。光谱性质测试中,所有溶剂为光谱纯试剂,水为超纯水。元素分析在Vario EL元素分析仪上进行。核磁共振光谱在Bruker AV400 NMR核磁共振仪上室温下测得;ESI ‐ MS谱图在Bruker Daltonics Esquire 6000质谱仪上获得。荧光光谱在Varian CARY Eclipse分光光度计上测定。UV光谱用Purkinje General TU‐1800分光光度计记录。pH值在上海雷磁pHS‐3C上测定。细胞、斑马鱼和拟南芥成像在蔡司LSM880共聚焦激光扫描显微仪上完成。紫外可见和荧光光谱数据用Origin软件包处理。

    探针1的合成路线如图 1所示。将1a(2.10 g,10 mmol)和二氨基马来腈(1.08 g,10 mmol)溶于无水乙醇(50 mL)中,加入2滴冰醋酸后加热回流,用薄层色谱监测直至反应完全。减压蒸馏除去溶剂,用95% 乙醇重结晶,得到探针11H NMR (400 MHz,DMSO ‐ d6):δ 8.21~8.23(d,J=8.4 Hz,1H,Ar ‐ H),8.17 (s,1H,CH=N),8.13(s,1H,Ar‐H),7.89(s,2H,NH2),7.87(s,2H,Ar‐H),7.57~7.60(t,J=7.2 Hz,1H,Ar‐H),7.41~7.45(t,J=7.2 Hz,1H,Ar‐H),7.16~7.18(d,J=8.4 Hz,1H,Ar‐H),5.27(s,2H,CH2)。13C NMR(101 MHz, DMSO ‐ d6):δ 154.31, 153.70, 132.41, 130.47, 130.24, 129.85, 129.50, 129.08,128.04,126.71,124.82, 122.25, 117.92, 115.76, 114.96,114.15,103.68,64.43。元素分析(C18H12N4O) 计算值(%):C:71.99;H:4.03;N:18.66。实验值(%):C:72.06;H:3.96;N:18.54。ESI‐ MS([M+H]+):m/z=301.109 3(计算值:301.108 9)。

    探针1用DMSO配成1 mmol·L-1的储备液,测试前使用磷酸盐缓冲溶液(PBS,20 mmol·L-1,pH 7.4) 稀释原液,配制成浓度为10 μmol·L-1的探针溶液(DMSO/H2O,体积比1∶99)。选择性和竞争性响应测试中所用ROS参考文献配制[30]。荧光光谱测试中激发波长为395 nm,激发和发射狭缝宽度分别为5和10 nm。

    将探针1重结晶得到适合单晶衍射分析的橘色片状单晶。选取尺寸为0.20 mm×0.18 mm×0.06 mm的探针1晶体,置于Bruker APEX Ⅱ CCD单晶衍射仪上,在室温下进行单晶X射线衍射分析。采用经石墨单色化的Mo 射线(λ=0.071 073 nm) 作为衍射光源。采用SHELXT程序[31]对探针1的晶体结构进行解析并用SHELXL程序[32]对各原子坐标和温度因子进行精修,氢原子坐标均由理论加氢确定。探针1的晶体学数据见表 1

    表 1

    表 1  探针1的晶体学数据
    Table 1.  Crystallographic data of probe 1
    下载: 导出CSV
    Parameter 1 Parameter 1
    Empirical formula C18H12N4O F(000) 624
    Formula weight 300.32 Z 4
    Temperature / K 293(2) Dc / (Mg·m-3) 1.414
    Crystal system Monoclinic μ / mm-1 0.092
    Space group P21/c θ range / (°) 2.255‐24.992
    a / nm 0.864 8(8) Independent reflection (Rint) 1 761 (0.027 1)
    b / nm 1.283 0(10) Observed reflection [I > 2σ(I)] 2 485
    c / nm 1.287 0(11) Goodness‐of‐fit on F2 1.023
    β/(°) 98.97(3) Final R indices [I > 2σ(I)] R1=0.044 7, wR2=0.113 0
    V / nm3 1.411(2) R indices (all data) R1=0.066 4, wR2=0.126 5

    细胞成像实验选用巨噬细胞(RAW 264.7)为研究对象。在RAW 264.7细胞的培养皿中分别加入浓度为0、10、20、30和40 μmol·L-1的探针1,37 ℃下培养24 h后,通过MTT法评价探针的细胞毒性[33]。使用包含探针1(10 μmol·L-1) 的培养基孵育RAW 264.7细胞30 min,激光共聚焦成像。培养基中随后加入ClO- (20 μmol·L-1)孵育30 min后,再次进行成像。RAW 264.7细胞用脂多糖(LPS,5 μg·mL-1)和佛波酯(PMA,5 μg·mL-1)孵育2 h,然后与10 μmol·L-1探针1一起孵育30 min,激光共聚焦成像。细胞用LPS(5 μg·mL-1)和PMA(5 μg·mL-1)孵育2 h,再使用N‐乙酰半胱氨酸(NAC,600 μmol·L-1)孵育2 h,然后与10 μmol·L-1探针1孵育30 min,激光共聚焦成像。激发波长405 nm,绿色通道光谱波长范围为490~ 571 nm。

    活体成像实验采用斑马鱼考察探针1对ClO-的识别能力。2日龄斑马鱼培养液中加入探针1(10 μmol·L-1)孵育1 h,激光共聚焦成像,之后再加入ClO-(20 μmol·L-1)孵育1 h,再次进行成像。斑马鱼用LPS(5 μg·mL-1)和PMA(5 μg·mL-1)孵育2 h,然后用探针1(10 μmol·L-1)孵育1 h,激光共聚焦成像。斑马鱼用LPS(5 μg·mL-1)和PMA(5 μg·mL-1)孵育2 h,再使用NAC(600 μmol·L-1) 孵育2 h,然后与10 μmol·L-1探针1孵育1 h,激光共聚焦成像。

    植物成像实验在拟南芥根尖上进行。用探针1 (10 μmol·L-1)处理拟南芥30 min,对根尖激光共聚焦成像。用探针1(10 μmol·L-1)预处理的拟南芥分别在含20和50 μmol·L-1的ClO-培养液中培养30 min,对根尖激光共聚焦成像。

    探针1的晶体结构椭球图见图 2。该晶体属于单斜晶系,晶体的空间群为P21/c。探针1中N1— C14键长为0.127 1(2) nm,证明席夫碱亚胺键的形成。除sp2杂化的C13原子外,探针1的其它非氢原子几乎共面,说明分子中存在良好的共轭效应。

    图 2

    图 2.  探针1的30% 概率水平的晶体结构椭球图
    Figure 2.  Crystal structure of probe 1 drawn at 30% ellipse probability level

    对探针1进行详细表征后,利用荧光光谱研究探针对ClO-的特异性识别。如图 3a所示,395 nm激发下,探针1溶液(10 μmol·L-1)几乎无荧光;加入ClO- (50 μmol·L-1)后在530 nm处出现强荧光发射峰,365 nm紫外灯下探针溶液颜色由暗变绿(图 3a插图)。而加入其它代表性阳离子(Ca2+、Cu2+、Fe3+、Mg2+、Na+)、阴离子(Cl-、HS-、NO3-、SO42-)、生物硫醇(半胱氨酸、同型半胱氨酸、谷胱甘肽,缩写分别为Cys、Hcy、GSH)和活性氧(H2O2、ONOO-、·OH、1O2)后,探针荧光发射几乎不变(图 3b)。同时,其它潜在干扰物(50 μmol·L-1)共存对1+ClO-的荧光发射无明显影响,表明探针1对ClO-的荧光开启识别具有良好的选择性。

    图 3

    图 3.  (a) 探针1和加入50 μmol·L-1不同分析物后的荧光发射谱,插图表示紫外灯照射下探针1溶液加入ClO-前后荧光颜色变化; (b) 50 μmol·L-1共存潜在干扰物对探针11+ClO-在530 nm处荧光强度的影响; (c) 不同浓度ClO-存在时探针1的荧光光谱; (d) 探针1在530 nm处荧光强度与ClO-浓度的线性关系
    Figure 3.  (a) Fluorescence spectra of probe 1 before and after adding different analytes (50 μmol·L-1), where the inset shows the fluorescence color change of probe 1 solution with and without ClO-; (b) Influence of co‐existence of potential competitive analytes (50 μmol·L-1) on the emission intensity of probe 1 and 1+ClO- at 530 nm; (c) Fluorescence spectra of 1 in the presence of different concentrations of ClO-; (d) Linear relationship between fluorescence intensity of probe 1 at 530 nm with the concentration of ClO-

    In figure b: 1: blank, 2: Ca2+, 3: Cu2+, 4: Fe3+, 5: Mg2+, 6: Na+, 7: Cl-, 8: HS-, 9: NO3-, 10: SO42-, 11: Cys, 12: Hcy, 13: GSH, 14: H2O2, 15: ONOO-, 16: ·OH, 17: 1O2.

    之后,我们考察了不同浓度ClO-对探针1荧光光谱的影响。如图 3c所示,随着ClO-浓度的梯度增加,探针1在530 nm处的荧光强度逐渐增强。当ClO-加入量达到50 μmol·L-1时体系荧光发射强度趋于稳定。数据拟合结果表明(图 3d),探针在530 nm处的荧光强度和ClO-浓度在7.5~50.0 μmol·L-1范围内线性相关(R2=0.992),表明探针1可以定量检测ClO-。经计算得出检出限LOD=0.32 μmol·L-1 (LOD=3σ/k,其中σ指空白标准偏差,k是线性方程的斜率),与已报道的部分席夫碱类ClO-荧光探针相当[24],说明探针1对ClO-具有较高的灵敏度,可用于低浓度ClO-的灵敏定量检测。

    此外,探讨了探针1对ClO-的响应时间。如图S1 (Supporting information)所示,探针1溶液中加入50 μmol·L-1的ClO-溶液后,其530 nm处的荧光强度立即增强并在20 s内达到峰值,表明探针可以实时检测ClO-。图S2表明,探针11+ClO-在530 nm处荧光强度在2.0~13.0的pH范围内基本保持稳定,且二者间巨大的荧光差异证实探针检测ClO-的工作pH范围较宽,有望用于复杂生物样品中ClO-的便捷检测。

    通过ESI‐MS实验证实了探针1与ClO-的反应模式。如图 4a所示,探针1的甲醇溶液中加入ClO-后,在m/z 211.073 9处出现归属于苯并色烯‐2‐甲醛(1a) 的[M+H]+离子峰(m/z 211.067 1,计算值211.075 9)。结合文献关于ClO-诱导的亚胺键断裂的报道[27],我们推测ClO-促使探针1水解,生成相应的1a,从而发射其特征绿色荧光。

    图 4

    图 4.  (a) 化合物1a及探针1加ClO-前后的ESI‐MS谱图; (b) DFT计算优化的探针1和化合物1a的结构及HOMO/LUMO
    Figure 4.  (a) ESI‐MS spectra of compound 1a and 1 with and without ClO-; (b) Optimized structures and HOMO/LUMO of 1 and 1a by DFT calculation

    The inset shows the possible reaction mechanism between probe 1 and ClO-.

    利用密度泛函理论(DFT)计算优化了探针1的结构,并与已经报道的1a的结构[34]进行了比对(图 4b)。计算结果表明,探针11a的HOMO和LUMO电子云均分散在整个分子,表明2个分子中存在明显的共轭效应。但探针1的末端胺基表现出光诱导电子转移(PET)作用,从而猝灭其荧光发射。1a分子内不仅没有PET效应,而且呈现显著的聚集诱导发光(AIE)活性[34],故探针与ClO-作用后发射显著的绿色荧光。上述结果证实了图 4a插图所示的ClO-诱导的探针1的分解反应模式。

    细胞成像实验前,采用MTT法确定探针的细胞毒性。梯度浓度的探针1(0~40 μmol·L-1)分别与RAW 264.7细胞孵化24 h,结果表明40 μmol·L-1的探针1与细胞孵化后细胞存活率仍高于80%(图S3),充分证实探针1具有较低的细胞毒性,可用于生物成像应用。

    之后,我们测试了探针1对细胞内ClO-的荧光成像。如图 5和S4所示,孵化探针1(10 μmol·L-1)的RAW 264.7细胞在绿色通道呈现微弱荧光;细胞继续孵化ClO-(50 μmol·L-1),细胞内绿色通道荧光明显增强;预孵化细胞内源性ClO-刺激剂LPS(5 μg· mL-1) 和PMA(5 μg·mL-1)的细胞再孵化探针,绿色通道荧光信号显著;而预孵化LPS(5 μg·mL-1)和PMA (5 μg·mL-1)的细胞,再孵化抗氧剂NAC(600 μmol· L-1),最后孵化探针(10 μmol·L-1),绿色通道荧光信号微弱。因此,探针1能够检测细胞内源性和外源性ClO-

    图 5

    图 5.  RAW 264.7细胞共聚焦荧光图像: (a) 37 ℃下, 10 μmol·L-1探针1孵化细胞30 min; (b) 孵化探针的细胞加入50 μmol·L-1的ClO-继续孵化30 min; (c) LPS (5 μg·mL-1)和PMA (5 μg·mL-1)孵化细胞2 h,再加入10 μmol·L-1探针1继续孵化30 min; (d) 37 ℃下LPS (5 μg·mL-1)和PMA (5 μg·mL-1)孵化细胞2 h,再加入NAC (600 μmol·L-1) 孵化2 h,最后加入10 μmol·L-1探针1继续孵化30 min
    Figure 5.  Confocal fluorescence images of RAW 264.7 cells: (a) cells incubated with 10 μmol·L-1 of probe 1 for 30 min at 37 ℃; (b) cells incubated with probe 1, and then with 50 μmol·L-1 of ClO- for another 30 min; (c) cells incubated with LPS (5 μg·mL-1) and PMA (5 μg·mL-1) for 2 h, and then with 10 μmol·L-1 of probe 1 for another 30 min; (d) cells incubated with LPS (5 μg·mL-1) and PMA (5 μg·mL-1) for 2 h at 37 ℃, then with NAC (600 μmol·L-1) for 2 h, and finally with 10 μmol·L-1 of probe 1 for 30 min

    Scale bar: 10 μm.

    斑马鱼成像结果表明,孵化探针1(10 μmol·L-1) 的斑马鱼腹腔荧光微弱;继续孵化ClO-(50 μmol· L-1),或先孵化LPS(5 μg·mL-1)和PMA(5 μg·mL-1)再孵化探针的斑马鱼腹腔发射强绿色荧光;而顺序孵化LPS(5 μg·mL-1)/PMA(5 μg·mL-1) 和NAC(600 μmol·L-1)的细胞,再孵化探针(10 μmol·L-1),绿色通道荧光信号微弱(图 6和S5)。因此,探针1能够检测斑马鱼体内ClO-浓度变化。类似地,拟南芥使用探针处理,其根尖发射弱的绿色荧光;继续使用不同浓度ClO-培养,绿色通道呈现浓度依赖的荧光信号增强(图 7和S6),表明探针可以检测植物组织中的ClO-。因此,探针1可用于多种生物样本中ClO-浓度变化的监测。

    图 6

    图 6.  斑马鱼共聚焦荧光图像: (a) 37 ℃下, 10 μmol·L-1探针1孵化斑马鱼1 h; (b) 孵化探针的斑马鱼加入50 μmol·L-1的ClO-继续孵化1 h; (c) 37 ℃下LPS (5 μg·mL-1)和PMA (5 μg·mL-1)孵化斑马鱼2 h,再加入10 μmol·L-1探针1继续孵化1 h; (d) 37 ℃下LPS (5 μg·mL-1)和PMA (5 μg·mL-1)孵化斑马鱼2 h,再加入NAC (600 μmol·L-1)孵化2 h, 最后加入10 μmol·L-1探针1继续孵化1 h
    Figure 6.  Confocal fluorescence images of zebrafish: (a) zebrafish incubated with 10 μmol·L-1 of probe 1 for 1 h at 37 ℃; (b) zebrafish incubated with probe 1, and then with 50 μmol·L-1 of ClO- for another 1 h; (c) zebrafish incubated with LPS (5 μg·mL-1) and PMA (5 μg·mL-1) for 2 h at 37 ℃, and then with 10 μmol·L-1 of probe 1 for another 1 h; (d) zebrafish incubated with LPS (5 μg·mL-1) and PMA (5 μg·mL-1) for 2 h at 37 ℃, then with NAC (600 μmol·L-1) for 2 h, and finally with 10 μmol·L-1 of probe 1 for 1 h

    Scale bar: 200 μm.

    图 7

    图 7.  拟南芥根尖共聚焦荧光图像: (a) 拟南芥用10 μmol·L-1探针1培养30 min; 探针处理的拟南芥再分别使用(b) 20 μmol·L-1和(c) 50 μmol·L-1的ClO-继续培养30 min
    Figure 7.  Confocal fluorescence images of Arabidopsis thaliana root tips: (a) Arabidopsis thaliana treated with 10 μmol·L-1 of probe 1 for 30 min; Arabidopsis thaliana treated with 10 μmol·L-1 of probe 1 for 30 min, and then with (b) 20 μmol·L-1 and (c) 50 μmol·L-1 of ClO- for another 30 min

    Scale bar: 50 μm.

    以苯并色烯‐2‐甲醛和二氨基马来腈为原料,通过简单的席夫碱缩合构建了荧光探针1。探针在富水体系中荧光微弱,其选择性地与ClO-作用后绿色荧光显著增强,可用于ClO-的荧光开启检测。通过质谱和理论计算验证了ClO-介导的探针分解反应机理。此外,探针成功用于RAW 264.7细胞、斑马鱼和拟南芥内ClO-水平的荧光成像,具有潜在广泛的应用前景。

    Supporting information is available at http://www.wjhxxb.cn


    1. [1]

      Ma C G, Zhong G Y, Zhao Y, Zhang P, Fu Y Q, Shen B X. Recent development of synthetic probes for detection of hypochlorous acid/hypochlorite[J]. Spectroc. Acta Pt. A - Molec. Biomolec. Spectr., 2020, 240:  118545. doi: 10.1016/j.saa.2020.118545

    2. [2]

      Hou J T, Kwon N, Wang S, Wang B Y, He X J, Yoon J, Shen J L. Sulfur - based fluorescent probes for HOCl: Mechanisms, design, and applications[J]. Coord. Chem. Rev., 2022, 450:  214232. doi: 10.1016/j.ccr.2021.214232

    3. [3]

      Kwon N, Chen Y H, Chen X Q, Yoon J, Kim M H. Recent progress on small molecule - based fluorescent imaging probes for hypochlorous acid (HOCl)/hypochlorite (OCl-)[J]. Dyes Pigment., 2022, 200:  110132. doi: 10.1016/j.dyepig.2022.110132

    4. [4]

      Wu D, Chen L Y, Xu Q L, Chen X Q, Yoon J Y. Design principles, sensing mechanisms, and applications of highly specific fluorescent probes for HOCl/OCl-[J]. Acc. Chem. Res., 2019, 52:  2158-2168. doi: 10.1021/acs.accounts.9b00307

    5. [5]

      Zhao B, Xu X H, Wen X, Liu Q Q, Dong C, Yang Q K, Fan C H, Yoon J, Lu Z L. Ratiometric near-infrared fluorescent probe monitors ferroptosis in HCC cells by imaging HClO in mitochondria[J]. Anal. Chem., 2024, 96:  5992-6000. doi: 10.1021/acs.analchem.4c00328

    6. [6]

      Fan G W, Zhang B, Wang J M, Wang N N, Qin S C, Zhao W L, Zhang J. Accurate construction of NIR probe for visualizing HClO fluctuations in type Ⅰ, type Ⅱ diabetes and diabetic liver disease assisted by theoretical calculation[J]. Talanta, 2024, 268:  125298. doi: 10.1016/j.talanta.2023.125298

    7. [7]

      Fang J, Li X, Gao C, Gao S H, Li W, Seidu M A, Zhou H J. A unique phenothiazine-based fluorescent probe using benzothiazolium as a reactivity regulator for the specific detection of hypochlorite in drinking water and living organisms[J]. Talanta, 2024, 268:  125299. doi: 10.1016/j.talanta.2023.125299

    8. [8]

      He S, Fang W L, Guo X F, Wang H. A water-soluble two -photon fluorescent probe for rapid and reversible monitoring of redox state[J]. Talanta, 2023, 253:  124066. doi: 10.1016/j.talanta.2022.124066

    9. [9]

      Zhao Y, Yu X Q, Liu X, Zhang D L, Li H, Zhou H L, Kong W H, Qu F L. ClO- induced dual - excitation fluorescent probes responding to diverse testing modes with ratio methodology[J]. Anal. Chem., 2023, 95:  7170-7177. doi: 10.1021/acs.analchem.2c05532

    10. [10]

      Xu S L, Guo F F, Xu Z H, Wang Y, James T D. A hemicyanine - based fluorescent probe for ratiometric detection of ClO- and turn- on detection of viscosity and its imaging application in mitochondria of living cells and zebrafish[J]. Sens. Actuator B-Chem., 2023, 383:  133510. doi: 10.1016/j.snb.2023.133510

    11. [11]

      Shang Z Y, Meng Q T, Zhang R, Zhang Z Q. Bifunctional near-infrared fluorescent probe for the selective detection of bisulfite and hypochlorous acid in food, water samples and in vivo[J]. Anal. Chim. Acta, 2023, 1279:  341783. doi: 10.1016/j.aca.2023.341783

    12. [12]

      Wang R Q, Zhou T, Li A M, Qu J, Zhang X, Zhu X F, Jing S. The design of fluorescein - ferrocene derivatives as HOCl - triggered turn - on fluorescent probes and anticancer prodrugs[J]. Dalton Trans., 2022, 51:  15330-15338. doi: 10.1039/D2DT02198F

    13. [13]

      Shan Y M, Yu K K, Wang N, Yu F Y, Li K, Liu Y H, Yu X Q. Assessing ClO - level during ER stress and cellular senescence through a ratio fluorescent probe with dual organelle targeting ability[J]. Sens. Actuator B-Chem., 2022, 358:  131383. doi: 10.1016/j.snb.2022.131383

    14. [14]

      Mao G J, Gao G Q, Liang Z Z, Wang Y Y, Su L, Wang Z X, Zhang H, Ma Q J, Zhang G. A mitochondria-targetable two- photon fluorescent probe with a far-red to near-infrared emission for sensing hypochlorite in biosystems[J]. Anal. Chim. Acta, 2019, 1081:  184-192. doi: 10.1016/j.aca.2019.07.040

    15. [15]

      Li S J, Wang P P, Yang K, Liu Y, Cheng D, He L W. Construction of HClO activated near - infrared fluorescent probe for imaging hepatocellular carcinoma[J]. Anal. Chim. Acta, 2023, 1252:  341009. doi: 10.1016/j.aca.2023.341009

    16. [16]

      Li S J, Yang K, Liu Y, Wang P P, Cheng D, He L W. An endoplasmic reticulum-targeted near-infrared probe for monitoring HClO fluctuation in diabetic mice and human blood[J]. Sens. Actuators B, 2023, 379:  133253. doi: 10.1016/j.snb.2022.133253

    17. [17]

      Chen Y, Zhao Y Q, Xie P, Huang L, Wang Y, Zhang J F, Wu X H, Zhou Y. Near-infrared fluorescent probes for detection of exogenous and endogenous hypochlorite in living cells[J]. Dyes Pigment., 2020, 177:  108308. doi: 10.1016/j.dyepig.2020.108308

    18. [18]

      Yan J L, Zhang L, Wu W N, Wang Y, Xu Z H. A novel AIRE-based fluorescent ratiometric probe with endoplasmic reticulum - targeting ability for detection of hypochlorite and bioimaging[J]. Bioorg. Chem., 2023, 131:  106319. doi: 10.1016/j.bioorg.2022.106319

    19. [19]

      Zhang Z H, Li C C, Qu J, Zhang H, Liu K, Wang J Y. A novel and fast-responsive two-photon fluorescent probe with modified group for monitoring endogenous HClO accompanied by a large turn-on signal and its application in zebrafish imaging[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2022, 278:  121361. doi: 10.1016/j.saa.2022.121361

    20. [20]

      Zhang Y, Yang H Y, Li M X, Gong S, Song J, Wang Z L, Wang S F. A red - emitting ratiometric fluorescent probe with large Stokes shift and emission peak shift for imaging hypochlorous acid in living cells and zebrafish[J]. Dyes Pigment., 2022, 197:  109861. doi: 10.1016/j.dyepig.2021.109861

    21. [21]

      Zhan Z X, Lei Q, Dai Y C, Wang D N, Yu Q W, Lv Y, Li W M. Simultaneous monitoring of HOCl and viscosity with drug - induced pyroptosis in live cells and acute lung injury[J]. Anal. Chem., 2022, 94:  12144-12151. doi: 10.1021/acs.analchem.2c02235

    22. [22]

      Li X Q, Wen Q, Gu J P, Liu W Q, Wang Q M, Zhou G F, Gao J W, Zheng Y H. Diverse reactivity to hypochlorite and copper ions based on a novel Schiff base derived from vitamin B6 cofactor[J]. J. Mol. Liq., 2020, 319:  114124. doi: 10.1016/j.molliq.2020.114124

    23. [23]

      Shi R G, Chen H, Qi Y P, Huang W, Yin G, Wang R Y. From aggregation - induced to solution emission: A new strategy for designing ratiometric fluorescent probes and its application for in vivo HClO detection[J]. Analyst, 2019, 144:  1696-1703. doi: 10.1039/C8AN01950A

    24. [24]

      Hou J T, Kim H S, Duan C, Ji M S, Wang S, Zeng L, Ren W X, Kim J S. A ratiometric fluorescent probe for detecting hypochlorite in the endoplasmic reticulum[J]. Chem. Commun., 2019, 55:  2533-2536. doi: 10.1039/C9CC00066F

    25. [25]

      张长丽, 张晶晶, 沈优, 陆嘉成, 黄芳, 徐莉. 一种快速响应的线粒体靶向荧光探针用于检测活细胞和斑马鱼中的次氯酸盐[J]. 无机化学学报, 2022,38,(8): 1623-1632. ZHANG C L, ZHANG J J, SHEN Y, LU J C, HUANG F, XU L. A fast - responsive mitochondria - targeting fluorescent probe detecting hypochlorite in living cells and zebrafish[J]. Chinese J. Inorg. Chem., 2022, 38(8):  1623-1632.

    26. [26]

      张晶晶, 严鸣, 卢雯, 徐莉, 王小青. 基于香豆素-肟的次氯酸根探针的设计、合成及荧光成像应用[J]. 无机化学学报, 2021,37,(6): 1623-1632. doi: 10.11862/CJIC.2021.133ZHANG J J, YAN M, LU W, XU L, WANG X Q. Design, synthesis and fluorescence imaging application of hypochlorite probe based on coumarin-oxime[J]. Chinese J. Inorg. Chem., 2021, 37(6):  1623-1632. doi: 10.11862/CJIC.2021.133

    27. [27]

      Chen L, Park S J, Wu D, Kim H M, Yoon J. A two - photon ESIPT based fluorescence probe for specific detection of hypochlorite[J]. Dyes Pigment., 2018, 158:  526-532. doi: 10.1016/j.dyepig.2018.01.027

    28. [28]

      Liu S S, Yan J L, Wu W N, Zhao X L, Fan Y C, Wang Y, Xu Z H. Highly selective fluorescent probe for rapid turn - on detection and cell imaging of hypochlorite anion[J]. J. Photochem. Photobiol. A, 2022, 432:  114082. doi: 10.1016/j.jphotochem.2022.114082

    29. [29]

      Li J J, Qi X L, Wei W, Zuo G C, Dong W. A red-emitting fluorescent and colorimetric dual-channel sensor for cyanide based on a hybrid naphthopyran - benzothiazol in aqueous solution[J]. Sens. Actuator B - Chem., 2016, 232:  666-672. doi: 10.1016/j.snb.2016.04.021

    30. [30]

      Wei P, Yuan W, Xue F F, Zhou W, Li R H, Zhang D T, Yi T. Deformylation reaction ‐ based probe for in vivo imaging of HOCl. Chem. Sci., 2018,9: 495‐501

    31. [31]

      Sheldrick G M. SHELXTL-Integrated space-group and crystal structure determination[J]. Acta Crystallogr. Sect. A, 2015, A71:  3-8.

    32. [32]

      Sheldrick G M. SHELXL ‐ 2018. University of Göttingen, Germany, 2018.

    33. [33]

      Xi L L, Guo X F, Wang C L, Wu W L, Huang M F, Miao J Y, Zhao B X. A near-infrared ratiometric fluorescent probe for rapid and selective detection of hypochlorous acid in aqueous solution and living cells[J]. Sens. Actuator B-Chem., 2018, 255:  666-671. doi: 10.1016/j.snb.2017.08.073

    34. [34]

      Wang B B, Lv M X, Wu W N, Xu Z H, Fan Y C, Bian L Y, Wang Y. Simple aggregation induced ratiometric emission active benzo[h] chromene derivative for detection of bisulfite in living cells[J]. J. Photochem. Photobiol. A, 2021, 411:  113193. doi: 10.1016/j.jphotochem.2021.113193

  • 图 1  探针1的合成路线图

    Figure 1  Synthetic route of probe 1

    图 2  探针1的30% 概率水平的晶体结构椭球图

    Figure 2  Crystal structure of probe 1 drawn at 30% ellipse probability level

    图 3  (a) 探针1和加入50 μmol·L-1不同分析物后的荧光发射谱,插图表示紫外灯照射下探针1溶液加入ClO-前后荧光颜色变化; (b) 50 μmol·L-1共存潜在干扰物对探针11+ClO-在530 nm处荧光强度的影响; (c) 不同浓度ClO-存在时探针1的荧光光谱; (d) 探针1在530 nm处荧光强度与ClO-浓度的线性关系

    Figure 3  (a) Fluorescence spectra of probe 1 before and after adding different analytes (50 μmol·L-1), where the inset shows the fluorescence color change of probe 1 solution with and without ClO-; (b) Influence of co‐existence of potential competitive analytes (50 μmol·L-1) on the emission intensity of probe 1 and 1+ClO- at 530 nm; (c) Fluorescence spectra of 1 in the presence of different concentrations of ClO-; (d) Linear relationship between fluorescence intensity of probe 1 at 530 nm with the concentration of ClO-

    In figure b: 1: blank, 2: Ca2+, 3: Cu2+, 4: Fe3+, 5: Mg2+, 6: Na+, 7: Cl-, 8: HS-, 9: NO3-, 10: SO42-, 11: Cys, 12: Hcy, 13: GSH, 14: H2O2, 15: ONOO-, 16: ·OH, 17: 1O2.

    图 4  (a) 化合物1a及探针1加ClO-前后的ESI‐MS谱图; (b) DFT计算优化的探针1和化合物1a的结构及HOMO/LUMO

    Figure 4  (a) ESI‐MS spectra of compound 1a and 1 with and without ClO-; (b) Optimized structures and HOMO/LUMO of 1 and 1a by DFT calculation

    The inset shows the possible reaction mechanism between probe 1 and ClO-.

    图 5  RAW 264.7细胞共聚焦荧光图像: (a) 37 ℃下, 10 μmol·L-1探针1孵化细胞30 min; (b) 孵化探针的细胞加入50 μmol·L-1的ClO-继续孵化30 min; (c) LPS (5 μg·mL-1)和PMA (5 μg·mL-1)孵化细胞2 h,再加入10 μmol·L-1探针1继续孵化30 min; (d) 37 ℃下LPS (5 μg·mL-1)和PMA (5 μg·mL-1)孵化细胞2 h,再加入NAC (600 μmol·L-1) 孵化2 h,最后加入10 μmol·L-1探针1继续孵化30 min

    Figure 5  Confocal fluorescence images of RAW 264.7 cells: (a) cells incubated with 10 μmol·L-1 of probe 1 for 30 min at 37 ℃; (b) cells incubated with probe 1, and then with 50 μmol·L-1 of ClO- for another 30 min; (c) cells incubated with LPS (5 μg·mL-1) and PMA (5 μg·mL-1) for 2 h, and then with 10 μmol·L-1 of probe 1 for another 30 min; (d) cells incubated with LPS (5 μg·mL-1) and PMA (5 μg·mL-1) for 2 h at 37 ℃, then with NAC (600 μmol·L-1) for 2 h, and finally with 10 μmol·L-1 of probe 1 for 30 min

    Scale bar: 10 μm.

    图 6  斑马鱼共聚焦荧光图像: (a) 37 ℃下, 10 μmol·L-1探针1孵化斑马鱼1 h; (b) 孵化探针的斑马鱼加入50 μmol·L-1的ClO-继续孵化1 h; (c) 37 ℃下LPS (5 μg·mL-1)和PMA (5 μg·mL-1)孵化斑马鱼2 h,再加入10 μmol·L-1探针1继续孵化1 h; (d) 37 ℃下LPS (5 μg·mL-1)和PMA (5 μg·mL-1)孵化斑马鱼2 h,再加入NAC (600 μmol·L-1)孵化2 h, 最后加入10 μmol·L-1探针1继续孵化1 h

    Figure 6  Confocal fluorescence images of zebrafish: (a) zebrafish incubated with 10 μmol·L-1 of probe 1 for 1 h at 37 ℃; (b) zebrafish incubated with probe 1, and then with 50 μmol·L-1 of ClO- for another 1 h; (c) zebrafish incubated with LPS (5 μg·mL-1) and PMA (5 μg·mL-1) for 2 h at 37 ℃, and then with 10 μmol·L-1 of probe 1 for another 1 h; (d) zebrafish incubated with LPS (5 μg·mL-1) and PMA (5 μg·mL-1) for 2 h at 37 ℃, then with NAC (600 μmol·L-1) for 2 h, and finally with 10 μmol·L-1 of probe 1 for 1 h

    Scale bar: 200 μm.

    图 7  拟南芥根尖共聚焦荧光图像: (a) 拟南芥用10 μmol·L-1探针1培养30 min; 探针处理的拟南芥再分别使用(b) 20 μmol·L-1和(c) 50 μmol·L-1的ClO-继续培养30 min

    Figure 7  Confocal fluorescence images of Arabidopsis thaliana root tips: (a) Arabidopsis thaliana treated with 10 μmol·L-1 of probe 1 for 30 min; Arabidopsis thaliana treated with 10 μmol·L-1 of probe 1 for 30 min, and then with (b) 20 μmol·L-1 and (c) 50 μmol·L-1 of ClO- for another 30 min

    Scale bar: 50 μm.

    表 1  探针1的晶体学数据

    Table 1.  Crystallographic data of probe 1

    Parameter 1 Parameter 1
    Empirical formula C18H12N4O F(000) 624
    Formula weight 300.32 Z 4
    Temperature / K 293(2) Dc / (Mg·m-3) 1.414
    Crystal system Monoclinic μ / mm-1 0.092
    Space group P21/c θ range / (°) 2.255‐24.992
    a / nm 0.864 8(8) Independent reflection (Rint) 1 761 (0.027 1)
    b / nm 1.283 0(10) Observed reflection [I > 2σ(I)] 2 485
    c / nm 1.287 0(11) Goodness‐of‐fit on F2 1.023
    β/(°) 98.97(3) Final R indices [I > 2σ(I)] R1=0.044 7, wR2=0.113 0
    V / nm3 1.411(2) R indices (all data) R1=0.066 4, wR2=0.126 5
    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  4
  • 文章访问数:  108
  • HTML全文浏览量:  13
文章相关
  • 发布日期:  2024-09-10
  • 收稿日期:  2024-05-04
  • 修回日期:  2024-07-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章