Citation: Jinglin CHENG, Xiaoming GUO, Tao MENG, Xu HU, Liang LI, Yanzhe WANG, Wenzhu HUANG. NiAlNd catalysts for CO2 methanation derived from the layered double hydroxide precursor[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(8): 1592-1602. doi: 10.11862/CJIC.20240152 shu

NiAlNd catalysts for CO2 methanation derived from the layered double hydroxide precursor

Figures(9)

  • The glycol solvent -thermal method prepared a serial of NiAlNd catalysts based on layered double hydrox-ides (LDHs) precursor. The introduction of Nd greatly promoted the catalytic activity for CO2 methanation at low temperatures. The CO2 conversion on the NiAlNd - 0.4 catalyst reached 83.9% under the reaction condition: T= 210 ℃, WHSV (weight hourly space velocity)=24 000 mL·g-1·h-1, p=100 kPa. The substitution of Nd3+ for Al3+ hin-dered the formation of LDHs structure in the precursor but decreased the particle size of the calcined catalyst. The interaction between NiO and Al2O3 was weakened with the introduction of Nd, resulting in better NiO component reducibility and high intrinsic activity of the Ni site. Moreover, the presence of Nd increased the number of surface basic sites of the catalyst, thus increasing the adsorption of CO2. With the increase in Nd, the surface area of metallic Ni in the reduced catalyst takes on a volcano-shape variation trend. The catalytic activities of NiAlNd catalysts are affected by the number and intrinsic activity of Ni sites simultaneously.
  • 加载中
    1. [1]

      Centi G, Quadrelli E A, Perathoner S. Catalysis for CO2 conversion: A key technology for rapid introduction of renewable energy in the value chain of chemical industries[J]. Energy Environ. Sci., 2013,6:1711-1731. doi: 10.1039/c3ee00056g

    2. [2]

      Zhang X G, Buthiyappan A, Jewaratnam J, Metselaar H S C, Raman A A A. Bifunctional materials for integrated CO2 capture and conver-sion: Review on adsorbent and catalyst types, recent advances, and challenges[J]. J. Environ. Chem. Eng., 2024,12111799. doi: 10.1016/j.jece.2023.111799

    3. [3]

      Tao Y, Edwards R W J, Mauzerall D L, Celia M A. Strategic carbon dioxide infrastructure to achieve a low-carbon power sector in the mid-western and south-central United States[J]. Environ. Sci. Technol., 2021,55(22):15013-15024. doi: 10.1021/acs.est.1c03480

    4. [4]

      Ashok J, Pati S, Hongmanorom P, Zhang T X, Chen J M, Kawi S. A review of recent catalyst advances in CO2 methanation processes[J]. Catal. Today, 2020,356:471-489. doi: 10.1016/j.cattod.2020.07.023

    5. [5]

      Wang Y, Winter L R, Chen J G, Yan B. CO2 hydrogenation over heterogeneous catalysts at atmospheric pressure: From electronic proper-ties to product selectivity[J]. Green Chem., 2021,231:249-267.

    6. [6]

      Mebrahtu C, Krebs F, Abate S, Perathoner S, Centi G, Palkovits R. CO2 methanation: Principles and challenges[J]. Stud. Surf. Sci. Catal., 2019,178:85-103.

    7. [7]

      Notton G, Nivet M L, Voyant C, Paoli C, Darras C, Motte F, Fouilloy A. Intermittent and stochastic character of renewable energy sources: Consequences, cost of intermittence and benefit of forecasting[J]. Renew. Sustain. Energy Rev., 2018,87:96-105. doi: 10.1016/j.rser.2018.02.007

    8. [8]

      Abujarad S Y, Mustafa M W, Jamian J J. Recent approaches of unit commitment in the presence of intermittent renewable energy resources: A review[J]. Renew. Sustain. Energy Rev., 2017,70:215-223. doi: 10.1016/j.rser.2016.11.246

    9. [9]

      Wulf C, Linßen J, Zapp P. Review of power-to-gas projects in Europe[J]. Energy Procedia, 2018,155:367-378. doi: 10.1016/j.egypro.2018.11.041

    10. [10]

      Ghaib K, Ben-Fares F Z. Power - to - methane: A state - of - the - art review[J]. Renew. Sustain. Energy Rev., 2018,81:433-446. doi: 10.1016/j.rser.2017.08.004

    11. [11]

      Frontera P, Macario A, Ferraro M, Antonucci P. Supported catalysts for CO2 methanation: A review[J]. Catalysts, 2017,7(2)59. doi: 10.3390/catal7020059

    12. [12]

      Zhou R, Rui N, Fan Z, Liu C J. Effect of the structure of Ni/TiO2 catalyst on CO2 methanation[J]. Int. J. Hydrogen Energy, 2016,41(47):22017-22025. doi: 10.1016/j.ijhydene.2016.08.093

    13. [13]

      Le T A, Kim M S, Lee S H, Kim T W, Park E D. CO and CO2 methanation over supported Ni catalysts[J]. Catal. Today, 2017,293-294:89-96. doi: 10.1016/j.cattod.2016.12.036

    14. [14]

      Zhao B R, Liu L, Shi H F, Zhang H G, Zhang J, Wang Y Z, Xie Y X. Plasma - induced micro - combustion for the synthesis of Ni - M/SiO2 (M=La, Ce, Zr) catalysts with high selectivity toward CO2 methana-tion[J]. Ind. Eng. Chem. Res., 2022,61:3877-3888. doi: 10.1021/acs.iecr.1c04300

    15. [15]

      Wang K, Men Y, Liu S, Wang J G, Li Y Y, Tang Y H, Li Z P, An W, Pan X L, Li L. Decoupling the size and support/metal loadings effect of Ni/SiO2 catalysts for CO2 methanation[J]. Fuel, 2021,304121388. doi: 10.1016/j.fuel.2021.121388

    16. [16]

      Wang H, Li Z Y, Cui G Q, Wei M. Synergistic catalysis at the Ni/ ZrO(2-x) interface toward low - temperature CO2 methanation[J]. ACS Appl. Mater. Interfaces, 2023,15:19021-19031. doi: 10.1021/acsami.3c01544

    17. [17]

      Zhao K C, Wang W H, Li Z H. Highly efficient Ni/ZrO2 catalysts prepared via combustion method for CO2 methanation[J]. J. CO2 Util., 2016,16:236-244. doi: 10.1016/j.jcou.2016.07.010

    18. [18]

      Champon I, Bengaouer A, Chaise A, Thomas S, Roger A C. Carbon dioxide methanation kinetic model on a commercial Ni/Al2O3 catalyst[J]. J. CO2 Util., 2019,34:256-265. doi: 10.1016/j.jcou.2019.05.030

    19. [19]

      Song F J, Zhong Q, Yu Y, Shi M G, Wu Y H, Hu J H, Song Y. Obtaining well-dispersed Ni/Al2O3 catalyst for CO2 methanation with a microwave-assisted method[J]. Int. J. Hydrogen Energy, 2017,42(7):4174-4183. doi: 10.1016/j.ijhydene.2016.10.141

    20. [20]

      Tada S, Shimizu T, Kameyama H, Haneda T, Kikuchi R. Ni/CeO2 catalysts with high CO2 methanation activity and high CH 4 selectivity at low temperatures[J]. Int. J. Hydrogen Energy, 2012,37(7):5527-5531. doi: 10.1016/j.ijhydene.2011.12.122

    21. [21]

      Huynh H L, Yu Z X. CO2 methanation on hydrotalcite-derived catalysts and structured reactors: A review[J]. Energy Technol., 2020,8(5)1901475. doi: 10.1002/ente.201901475

    22. [22]

      He L, Lin Q Q, Liu Y, Huang Y Q. Unique catalysis of Ni -Al hydrotalcite derived catalyst in CO2 methanation: Cooperative effect between Ni nanoparticles and a basic support[J]. J. Energy Chem., 2014,23(5):587-592. doi: 10.1016/S2095-4956(14)60144-3

    23. [23]

      Fan G L, Li F, Evans D G, Duan X. Catalytic applications of layered double hydroxides: Recent advances and perspectives[J]. Chem. Soc. Rev., 2014,43(20):7040-7066. doi: 10.1039/C4CS00160E

    24. [24]

      Abate S, Barbera K, Giglio E, Deorsola F, Bensaid S, Perathoner S, Pirone R, Centi G. Synthesis, characterization, and activity pattern of Ni-Al hydrotalcite catalysts in CO2 methanation[J]. Ind. Eng. Chem. Res., 2016,55(30):8299-8308. doi: 10.1021/acs.iecr.6b01581

    25. [25]

      Szabados M, Szabados T, Mucsi R, Sápi A, Kónya Z, Kukovecz Á, Pálinkó I, Sipos P. Facile preparation of nickel -poor layered double hydroxides from mechanochemically pretreated gibbsite with a variety of interlamellar anions and their use as catalyst precursors for CO2 hydrogenation[J]. Mater. Res. Bull., 2023,157112010. doi: 10.1016/j.materresbull.2022.112010

    26. [26]

      Namvar F, Salavati-Niasari M, Meshkani F. Effect of the rare earth metals (Tb, Nd, Dy) addition for the modification of nickel catalysts supported on alumina in CO2 methanation[J]. Int. J. Hydrogen Energy, 2023,48(5):1877-1891. doi: 10.1016/j.ijhydene.2022.10.096

    27. [27]

      Xu Y, Chen Y, Li J, Zhou J, Song M, Zhang X Q, Yin Y X. Improved low-temperature activity of Ni-Ce/γ-Al2 O3 catalyst with layer structural precursor prepared by cold plasma for CO2 methanation[J]. Int. J. Hydrogen Energy, 2017,42(18):13085-13091. doi: 10.1016/j.ijhydene.2017.04.019

    28. [28]

      Sun C, Świrk Da Costa K, Wierzbicki D, Motak M, Grzybek T, Da Costa P. On the effect of yttrium promotion on Ni - layered double hydroxides - derived catalysts for hydrogenation of CO2 to methane[J]. Int. J. Hydrogen Energy, 2021,46(22):12169-12179. doi: 10.1016/j.ijhydene.2020.03.202

    29. [29]

      Takano H, Kirihata Y, Izumiya K, Kumagai N, Habazaki H, Hashi-moto K. Highly active Ni/Y - doped ZrO2 catalysts for CO2 methanation[J]. Appl. Surf. Sci., 2016,388:653-663. doi: 10.1016/j.apsusc.2015.11.187

    30. [30]

      Li H, Liu J, Yang J, Ma L Z, Fan X, Liang P, Liu Q, Zhao P W, Wang B, Cheng Y. Why the one-pot synthesized Sm-modified nickel phyllosilicate is more active than the post synthesized one for CO2 methanation? Identifying the pivotal role of generating Sm2Si2O7[J]. Fuel Process.Technol., 2023,247107802. doi: 10.1016/j.fuproc.2023.107802

    31. [31]

      Liu Q, Yang H Y, Dong H, Zhang W, Bian B, He Q K, Yang J, Meng X B, Tian Z W, Zhao G M. Effects of preparation method and Sm2O3 promoter on CO methanation by a mesoporous NiO-Sm2O3/Al2O3 catalyst[J]. New J. Chem., 2018,42(15):13096-13106. doi: 10.1039/C8NJ02282H

    32. [32]

      Namvar F, Hajizadeh-Oghaz M, Mahdi M A, Ganduh S H, Meshkani F, Salavati-Niasari M. The synthesis and characterization of Ni-M - Tb/Al2O3 (M: Mg, Ca, Sr and Ba) nanocatalysts prepared by different types of doping using the ultrasonic-assisted method to enhance CO2 methanation[J]. Int. J. Hydrogen Energy, 2023,48(10):3862-3877. doi: 10.1016/j.ijhydene.2022.10.243

    33. [33]

      Zhang Q W, Xu R N, Liu N, Dai C N, Yu G Q, Wang N, Chen B H. In situ Ce-doped catalyst derived from NiCeAl-LDHs with enhanced low - temperature performance for CO2 methanation[J]. Appl. Surf. Sci., 2022,579152204. doi: 10.1016/j.apsusc.2021.152204

    34. [34]

      Sun C, Beaunier P, Da Costa P. Effect of ceria promotion on the catalytic performance of Ni/SBA - 16 catalysts for CO2 methanation[J]. Catal. Sci. Technol., 2020,10(18):6330-6341. doi: 10.1039/D0CY00922A

    35. [35]

      Zhou L L, Guo X M, Hu X, Zhang Y X, Cheng J L, Guo Q S. CO2 methanation reaction over La - modified NiAl catalysts derived from hydrotalcite-like precursors[J]. Fuel, 2024,362130888. doi: 10.1016/j.fuel.2024.130888

    36. [36]

      Wang Z L, Zhang T Y, Reina T R, Huang L, Xie W F, Musyoka N M, Oboirien B, Wang Q. Enhanced low - temperature CO2 methanation over La - promoted NiMgAl LDH derived catalyst: Fine - tuning La loading for an optimal performance[J]. Fuel, 2024,366131383. doi: 10.1016/j.fuel.2024.131383

    37. [37]

      Yang H, Wen X Y, Yin S Y, Zhang Y X, Wu C E, Xu L, Qiu J, Hu X, Xu L L, Chen M D. The construction of the Ni/La2O2CO3 nanorods catalysts with enhanced low-temperature CO2 methanation activities[J]. J. Ind. Eng. Chem. Res., 2023,128:167-183. doi: 10.1016/j.jiec.2023.07.046

    38. [38]

      Gac W, Zawadzki W, Kuśmierz M, Słowik G, Grudziński W. Neo-dymium promoted ceria and alumina supported nickel catalysts for CO2 methanation reaction[J]. Appl. Surf. Sci., 2023,631157542. doi: 10.1016/j.apsusc.2023.157542

    39. [39]

      Dias Y R, Perez-Lopez O W. CO2 methanation over Ni - Al LDH - derived catalyst with variable Ni/Al ratio[J]. J CO2 Util., 2023,68102381. doi: 10.1016/j.jcou.2022.102381

    40. [40]

      Brooks C S, Kehrer V J. Chemisorption of carbon monoxide on metal surfaces by pulse chromatography[J]. Anal. Chem., 1969,41:103-106.

    41. [41]

      Guo X P, Peng Z J, Hu M X, Zuo C C, Traitangwong A, Meeyoo V, Li C S, Zhang S J. Highly active Ni-based catalyst derived from double hydroxides precursor for low temperature CO2 methanation[J]. Ind. Eng. Chem. Res., 2018,57(28):9102-9111. doi: 10.1021/acs.iecr.8b01619

    42. [42]

      Dias Y R, Bernardi F, Perez-Lopez O W. Improving low-temperature CO2 methanation by promoting Ni - Al LDH - derived catalysts with alkali metals[J]. ChemCatChem, 2023,15(22)e202300834. doi: 10.1002/cctc.202300834

    43. [43]

      Kathiraser Y, Thitsartarn W, Sutthiumporn K, Kawi S. Inverse NiAl2O4 on LaAlO3 -Al2O3: Unique catalytic structure for stable CO2 reforming of methane[J]. J. Phys. Chem. C, 2013,117:8120-8130. doi: 10.1021/jp401855x

    44. [44]

      Vos B, Poels E, Bliek A. Impact of calcination conditions on the structure of alumina-supported nickel particles[J]. J. Catal., 2001,198:77-88. doi: 10.1006/jcat.2000.3082

    45. [45]

      Li W Y, Zhao G F, Zhong J W, Xie J. Upgrading renewable biogas into syngas via bi-reforming over high-entropy spinel-type catalysts derived from layered double hydroxides[J]. Fuel, 2024,358130155. doi: 10.1016/j.fuel.2023.130155

    46. [46]

      Casarin M, Falcomer D, Glisenti A, Vittadini A. Experimental and theoretical study of the interaction of CO2 with α-Al2O3[J]. Inorg. Chem., 2003,42:436-445. doi: 10.1021/ic0257773

    47. [47]

      Burger T, Koschany F, Thomys O, Köhler K, Hinrichsen O. CO2 methanation over Fe- and Mn-promoted co-precipitated Ni-Al catalysts: Synthesis, characterization and catalysis study[J]. Appl. Catal. A-Gen., 2018,558:44-54. doi: 10.1016/j.apcata.2018.03.021

    48. [48]

      Weilach C, Spiel C, Föttinger K, Rupprechter G. Carbonate formation on Al2O3 thin film model catalyst supports[J]. Surf. Sci., 2011,605:1503-1509. doi: 10.1016/j.susc.2011.05.025

    49. [49]

      Fottinger K, Schlögl R, Rupprechter G. The mechanism of carbonate formation on Pd-Al2O3 catalysts[J]. Chem. Commun., 2008,3:320-322.

    50. [50]

      Ma Y, Liu J, Chu M, Yue J R, Cui Y B, Xu G W. Enhanced low - temperature activity of CO2 methanation over Ni/CeO2 catalyst[J]. Catal. Lett., 2021,152:872-882.

    51. [51]

      LI Z H, HUANG W, ZUO Z J, SONG Y J, XIE K C. XPS study on CuZnAl catalysts prepared by different methods for direct synthesis of dimethyl ether[J]. Chin. J. Catal., 2009,30(2):171-177. doi: 10.3321/j.issn:0253-9837.2009.02.017

  • 加载中
    1. [1]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    2. [2]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    3. [3]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    4. [4]

      Xueyang ZhaoBangwei DengHongtao XieYizhao LiQingqing YeFan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139

    5. [5]

      Li LiFanpeng ChenBohang ZhaoYifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240

    6. [6]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    7. [7]

      Dongmei DaiXiaobing LaiXiaojuan WangYunting YaoMengmin JiaLiang WangPengyao YanYaru QiaoZhuangzhuang ZhangBao LiDai-Huo Liu . Increasing (010) active plane of P2-type layered cathodes with hexagonal prism towards improved sodium-storage. Chinese Chemical Letters, 2024, 35(10): 109405-. doi: 10.1016/j.cclet.2023.109405

    8. [8]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    9. [9]

      Guangchang YangShenglong YangJinlian YuYishun XieChunlei TanFeiyan LaiQianqian JinHongqiang WangXiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722

    10. [10]

      Tao BanXi-Yang YuHai-Kuo TianZheng-Qing HuangChun-Ran Chang . One-step conversion of methane and formaldehyde to ethanol over SA-FLP dual-active-site catalysts: A DFT study. Chinese Chemical Letters, 2024, 35(4): 108549-. doi: 10.1016/j.cclet.2023.108549

    11. [11]

      Yun-Xin HuangLin-Qian YuKe-Yu ChenHao WangShou-Yan ZhaoBao-Cheng HuangRen-Cun Jin . Biochar with self-doped N to activate peroxymonosulfate for bisphenol-A degradation via electron transfer mechanism: The active edge graphitic N site. Chinese Chemical Letters, 2024, 35(9): 109437-. doi: 10.1016/j.cclet.2023.109437

    12. [12]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    13. [13]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    14. [14]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    15. [15]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    16. [16]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    17. [17]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    18. [18]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    19. [19]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    20. [20]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

Metrics
  • PDF Downloads(0)
  • Abstract views(147)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return