Citation: Xiaoning TANG, Shu XIA, Jie LEI, Xingfu YANG, Qiuyang LUO, Junnan LIU, An XUE. Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149 shu

Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries

Figures(5)

  • Herein, F-doped MnO2 with abundant oxygen vacancy (named F-MnO2) was synthesized by an efficient and simple one-step hydrothermal method. The introduced oxygen vacancy and pre-intercalated F-doping play a vital role in improving the electrical conductivity of F-MnO2 and facilitating ion diffusion, contributing to enhanced rate capability. In addition, the F doping results in the formation of F—Mn bonds, which can effectively inhibit the Jahn-Teller distortion of Mn3+ in the discharge product, thus improving the structural stability. Benefiting from these synergic effects, the assembled Zn||F-MnO2 full battery exhibited a high capacity of 274 mAh·g-1 at 0.5 A·g-1, as well as a long cycle life and superior rate performance. Meanwhile, the energy storage mechanism was proved to be a H+ and Zn2+ co-insertion/extraction process by cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) tests.
  • 加载中
    1. [1]

      Qiu K Y, Ma G Q, Wang Y Y, Liu M Y, Zhang M Y, Li X T, Qu X H, Yuan W T, Nie X Y, Zhang N Y. Highly compact zinc metal anode and wide -temperature aqueous electrolyte enabled by acetamide additives for deep cycling Zn batteries[J]. Adv. Funct. Mater., 2024,34(18)2313358. doi: 10.1002/adfm.202313358

    2. [2]

      Bai X, Nan Y, Yang K, Deng B J, Shao J J, Hu W G, Pu X. Zn ionophores to suppress hydrogen evolution and promote uniform Zn deposition in aqueous Zn batteries[J]. Adv. Funct. Mater., 2023,33(42)2307595. doi: 10.1002/adfm.202307595

    3. [3]

      Chen X J, Kong Q Q, Wu X Q, An X G, Zhang J, Wang Q Y, Yao W T. V2O3@C optimized by carbon regulation strategy for ultra long-life aqueous zinc-ion batteries[J]. Chem. Eng. J., 2023,451138870. doi: 10.1016/j.cej.2022.138870

    4. [4]

      Zhang N, Ji Y R, Wang J C, Wang P F, Zhu Y R, Yi T F. Understanding of the charge storage mechanism of MnO2-based aqueous zinc-ion batteries: Reaction processes and regulation strategies[J]. J. Energy Chem., 2023,82:423-463. doi: 10.1016/j.jechem.2023.03.052

    5. [5]

      Luan J Y, Yuan H Y, Liu J, Zhong C. Recent advances on charge storage mechanisms and optimization strategies of Mn - based cathode in zinc-manganese oxides batteries[J]. Energy Storage Mater., 2024,66101689.

    6. [6]

      Zampardi G, La Mantia F. Prussian blue analogues as aqueous Zn-ion batteries electrodes: Current challenges and future perspectives[J]. Curr. Opin. Electrochem., 2020,21:84-92. doi: 10.1016/j.coelec.2020.01.014

    7. [7]

      Huang L L, Li J H, Wang J L, Lv H, Liu Y Y, Peng B H, Chen L, Guo W, Wang G, Gu T T. Organic compound as a cathode for aqueous zinc- ion batteries with improved electrochemical performance via multiple active centers[J]. ACS Appl. Energy Mater., 2022,5(12):15780-15787. doi: 10.1021/acsaem.2c03338

    8. [8]

      Zhao Y J, Zhang P J, Liang J R, Xia X Y, Ren L T, Song L, Liu W, Sun X M. Uncovering sulfur doping effect in MnO2 nanosheets as an efficient cathode for aqueous zinc ion battery[J]. Energy Storage Mater., 2022,47:424-433. doi: 10.1016/j.ensm.2022.02.030

    9. [9]

      Liu G X, Huang H W, Bi R, Xiao X, Ma T Y, Zhang L. K+ pre- intercalated manganese dioxide with enhanced Zn2+ diffusion for high rate and durable aqueous zinc-ion batteries[J]. J. Mater. Chem. A, 2019,7(50):20806-20812.

    10. [10]

      Zhai X Z, Qu J, Hao S M, Jing Y Q, Chang W, Wang J, Li W, Abdelkrim Y, Yuan H, Yu Z Z. Layered birnessite cathode with a displacement/intercalation mechanism for high - performance aqueous zinc-ion batteries[J]. Nano⁃Micro Lett., 2020,12(1)152.

    11. [11]

      Wu T H, Liang W Y, Lin Y Q. Facile synthesis of Cu - intercalated MnO2 nanoflakes cathode for enhanced energy storage in zinc - ion batteries[J]. J. Taiwan Inst. Chem. Eng., 2022,131:245-254.

    12. [12]

      Wang S, Zhao X Q, Chen H, Guo J D, Liu R X, Yang D A. Ammonium ion pre - intercalated manganese dioxide with hydrogen bond for high-rate and stable zinc-ion batteries[J]. EcoMat, 2022,4e2100065.

    13. [13]

      Sun T J, Zheng S B, Nian Q S, Tao Z L. Hydrogen bond shielding effect for high-performance aqueous zinc ion batteries[J]. Small, 2022,18(4)2103081.

    14. [14]

      Zang X L, Wang X S, Liu H L, Ma X L, Wang W J, Ji J H, Chen J T, Li R, Xue M Q. Enhanced ion conduction via epitaxially polymerized two-dimensional conducting polymer for high-performance cathode in zinc - ion batteries[J]. ACS Appl. Mater. Interfaces, 2020,12(12):9347-9354.

    15. [15]

      Huang J J, Wang Z, Hou M Y, Dong X L, Liu Y, Wang Y G, Xia Y Y. Polyaniline-intercalated manganese dioxide nanolayers as a high- performance cathode material for an aqueous zinc - ion battery[J]. Nat. Commun., 2018,92901.  

    16. [16]

      Cui G D, Zeng Y X, Wu J F, Guo Y, Gu X J, Lou X W. Synthesis of nitrogen-doped KMn8O16 with oxygen vacancy for stable zinc-ion batteries[J]. Adv. Sci., 2022,10(9)e2106067.

    17. [17]

      Ma K X, Ge S Y, Fu R R, Feng C H, Zhao H Y, Shen X R, Liang G F, Zhao Y, Jiao Q Z. Uncovering Se, P co - doping effect in MnO2 toward high-performance aqueous zinc-ion batteries[J]. Chem. Eng. J., 2024,484:52-63.

    18. [18]

      Ye X L, Han D L, Jiang G Y, Cui C J, Guo Y, Wang Y G, Zhang Z C, Weng Z, Yang Q H. Unraveling the deposition/dissolution chemistry of MnO2 for high - energy aqueous batteries[J]. Energy Environ. Sci., 2023,3(16):1016-1023.

    19. [19]

      Korotkov R F, Baranchikov A E, Boytsova O V, Goldt A E, Kurzeev S A, Ivanov V K. Selective hydrothermal microwave synthesis of various manganese dioxide polymorphs[J]. Russ. J. Inorg. Chem., 2016,2(61):129-134.

    20. [20]

      Wang J J, Wang J G, Qin X P, Wang Y, You Z Y, Liu H Y, Shao M H. Superfine MnO2 nanowires with rich defects toward boosted zinc ion storage performance[J]. ACS Appl. Mater. Interfaces, 2020,12(31):34949-34958.

    21. [21]

      Wang J G, Yang Y, Huang Z H, Kang F Y. A high - performance asymmetric supercapacitor based on carbon and carbon-MnO2 nanofiber electrodes[J]. Carbon, 2013,61:190-199.

    22. [22]

      Gao Y, Wang M S, Wang H, Li X P, Chu Y W, Tang Z C, Feng Y L, Wang J Q, Pan Y, Ma Z Y, Yang Z L, Zhou D, Li X. Kinetic and thermodynamic synergy of organic small molecular additives enables constructed stable zinc anode[J]. J. Energy Chem., 2023,84:62-72.

    23. [23]

      Lee J, Lee H, Bak C, Hong Y, Joung D, Ko J B, Lee Y M, Kim C. Enhancing hydrophilicity of thick electrodes for high energy density aqueous batteries[J]. Nano-Micro Lett., 2023,1(15)97.

    24. [24]

      Ran K, Chen Q L, Song F X, Yang F H. Defective construction of vanadium-based cathode materials for high-rate long-cycle aqueous zinc ion batteries[J]. J. Colloid Interface Sci., 2024,653:673-686.

    25. [25]

      Xiong T, Zhang Y X, Lee W S V, Xue J M. Defect engineering in manganese - based oxides for aqueous rechargeable zinc - ion batteries: A review[J]. Adv. Energy Mater., 2020,34(10)2001769.

    26. [26]

      Huang J, Xie X F, Liu K, Liang S Q, Fang G Z. Perspectives in electrochemical in situ structural reconstruction of cathode materials for multivalent-ion storage[J]. Energy Environ. Mater., 2023,1(6)e12309.

    27. [27]

      Gao Y X, Zhou J, Qin L P, Xu Z M, Liu Z X, Wang L B, Cao X X, Fang G Z, Liang S Q. Crystal plane induced in-situ electrochemical activation of manganese - based cathode enable long - term aqueous zinc-ion batteries[J]. Green Energy Environ., 2023,5(8):1429-1436.

    28. [28]

      Li Z Z, Zheng Y, Jiao Q Z, Zhao Y, Li H S, Feng C H. Tailoring porous three-dimensional (Co, Mn) (Co, Mn)2O4/PPy architecture towards high-performance cathode for aqueous zinc-ion batteries[J]. Chem. Eng. J., 2023,36(465):20109-20120.

    29. [29]

      Wang Q F, Tian G F, Huang C, Zhang D H. Advanced in situ electro- chemical induced dual - mechanism heterointerface toward high- energy aqueous zinc-ion batteries[J]. Adv. Energy Mater., 2023,41(12)2202182.

    30. [30]

      Zhao Q H, Song A Y, Zhao W G, Qin R Z, Ding S X, Chen X, Song Y L, Yang L Y, Lin H, Li S N, Pan F. Boosting the energy density of aqueous batteries via facile Grotthuss proton transport[J]. Angew. Chem. Int. Ed., 2021,8(60):4169-4174.

    31. [31]

      Hu H L, He H C, Xie R K, Cheng C, Yan T R, Chen C, Sun D, Chan T S, Wu J P, Zhang L. Achieving reversible Mn2+/Mn4+ double redox couple through anionic substitution in a P2-type layered oxide cathode[J]. Nano Energy, 2022,99107390.

    32. [32]

      Wang S, Ma W B, Sang Z Y, Hou F, Si W P, Guo J D, Liang J, Yang D A. Dual - modification of manganese oxide by heterostructure and cation pre-intercalation for high-rate and stable zinc-ion storage[J]. J. Energy Chem., 2022,67:82-91.

    33. [33]

      Wang K N, Wang J W, Chen P M, Qin M R, Yang C M, Zhang W L, Zhang Z Z, Zhen Y Z, Fu F, Xu B. Structural transformation by crystal engineering endows aqueous zinc - ion batteries with ultra - long cyclability[J]. Small, 2023,29(19)2300585.

    34. [34]

      Wang D H, Wang L F, Liang G J, Li H F, Liu Z X, Tang Z J, Liang J B, Zhi C Y. A superior δ - MnO2 cathode and a self - healing Zn - δ - MnO2 battery[J]. ACS Nano, 2019,9(13):10643-10652.

  • 加载中
    1. [1]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    2. [2]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    3. [3]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    4. [4]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    5. [5]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    6. [6]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    7. [7]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    8. [8]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    9. [9]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    10. [10]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    11. [11]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    12. [12]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    13. [13]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    14. [14]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    15. [15]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    16. [16]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    17. [17]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    18. [18]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    19. [19]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    20. [20]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

Metrics
  • PDF Downloads(0)
  • Abstract views(43)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return