Citation:
Qingwang LIU. MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance[J]. Chinese Journal of Inorganic Chemistry,
;2025, 41(4): 821-832.
doi:
10.11862/CJIC.20240148
-
MoS2/Ag/g-C3N4 composite photocatalysts were prepared via hydrothermal synthesis, and a series of analytical methods were employed for systematic characterization. The results indicate that the significant enhancement in catalytic degradation activity is attributed to the formation of Z-scheme heterojunction, which effectively facilitates the transport and separation of photogenerated charge carriers while suppressing the recombination of photogenerated electron and hole pairs. Degradation experiments demonstrated that the prepared composite material achieved a degradation rate of up to 98% for rhodamine B (RhB) within 120 min, exhibiting superior photocatalytic performance compared to individual photocatalysts. Furthermore, capture experiments and electron paramagnetic resonance (EPR) results revealed that superoxide radicals (·O2-) and photogenerated holes (h+) were the key active species in the photocatalytic degradation of RhB. Finally, an in-depth discussion of the photocatalytic degradation mechanism of the composite material was conducted.
-
-
-
[1]
ZHAO B B, ZHONG W, CHEN F, WANG P, BIE C B, YU H G. High-crystalline g-C3N4 photocatalysts: Synthesis, structure modulation, and H2-evolution application[J]. Chin. J. Catal., 2023,52:127-143. doi: 10.1016/S1872-2067(23)64491-2
-
[2]
NGUYEN T K A, PHAM T T, GENDENSUREN B, OH E S, SHIN E W. Defect engineering of water-dispersible g-C3N4 photocatalysts by chemical oxidative etching of bulk g-C3N4 prepared in different calcination atmospheres[J]. J. Mater. Sci. Technol., 2022,103:232-243. doi: 10.1016/j.jmst.2021.07.013
-
[3]
MISHRA A, MEHTA A, BASU S, SHETTI N P, REDDY K R, AMINABHAVI T M. Graphitic carbon nitride (g-C3N4)-based metal-free photocatalysts for water splitting: A review[J]. Carbon, 2019,149:693-721. doi: 10.1016/j.carbon.2019.04.104
-
[4]
NIUY Q, HU F G, XU H L, ZHANG S Z, SONG B, WANG H L, LI M L, SHAO G, WANG H L, LU H X. Exploration for high performance g-C3N4 photocatalyst from different precursors[J]. Mater. Today Commun., 2023,34105040. doi: 10.1016/j.mtcomm.2022.105040
-
[5]
LIU S Z, WANG S B, JIANG Y, ZHAO Z Q, JIANG G Y, SUN Z Y. Synthesis of Fe2O3 loaded porous g-C3N4 photocatalyst for photocatalytic reduction of dinitrogen to ammonia[J]. Chem. Eng. J., 2019,373:572-579. doi: 10.1016/j.cej.2019.05.021
-
[6]
KONG L R, WANG J G, MU X J, RUI LI, LI X X, FAN X X, SONG P, MA F C, SUN M T. Porous size dependent g-C3N4 for efficient photocatalysts: Regulation synthesizes and physical mechanism[J]. Mater. Today Energy, 2019,13:11-21. doi: 10.1016/j.mtener.2019.04.011
-
[7]
CUI L, LIU S L, WANG F K, LI J Y, SONGY H, SHENGY , ZOU H F. Growth of uniform g-C3N4 shells on 1D TiO2 nanofibers via vapor deposition approach with enhanced visible light photocatalytic activity[J]. J. Alloy. Compd., 2020,826154001. doi: 10.1016/j.jallcom.2020.154001
-
[8]
LIU Q W, MENG Y, LIU Q M, XU M, HU Y H, CHEN S K. Synthesis of Ag3PO4/Ag/g-C3N4 composite for enhanced photocatalytic degradation of methyl orange[J]. Molecules, 2023,28(16)6082. doi: 10.3390/molecules28166082
-
[9]
WANG Y Y, YANG X J, LOU J H. Enhance ZnO photocatalytic performance via radiation modified g-C3N4[J]. Molecules, 2022,27(23)8476. doi: 10.3390/molecules27238476
-
[10]
FELLIPE M C, CAUE R, EDUARDO B A. Improving g-C3N4:WO3 Z-scheme photocatalytic performance under visible light by multivariate optimization of g-C3N4 synthesis[J]. Appl. Surf. Sci., 2021,537147904. doi: 10.1016/j.apsusc.2020.147904
-
[11]
CHEN S K, JIANG D C, CAO Y M, ZENG G, CHI H B, MIAO Y X, ZHANG Y F, LI L, HE Y X, KE F, YE S. Doping and heterojunction construction dual-regulation: Magnetically recoverable CoFe1.9Y0.1O4/g-C3N4 nanosheets with enhanced visible-light-driven photocatalytic activity[J]. Mater. Lett., 2021,287129275. doi: 10.1016/j.matlet.2020.129275
-
[12]
JU L, LIU C, SHI L R, SUN L. The high-speed channel made of metal for interfacial charge transfer in Z-scheme g-C3N4/MoS2 water-splitting photocatalyst[J]. Mater. Res. Express, 2019,6115545. doi: 10.1088/2053-1591/ab509c
-
[13]
ZHOU D F, QIU C Q. Study on the effect of Co doping concentration on optical properties of g-C3N4[J]. Chem. Phys. Lett., 2019,728:70-73. doi: 10.1016/j.cplett.2019.04.060
-
[14]
MAGED S, EL-BORADY O M, EL-HOSAINY M, MAGED E K. Efficient photocatalytic reduction of p-nitrophenol under visible light irradiation based on Ag NPs loaded brown 2D g-C3N4/g-C3N4 QDs nanocomposite[J]. Environ. Sci. Pollut. Res., 2023,30:117909-117922. doi: 10.1007/s11356-023-30010-z
-
[15]
ZHAI N X, LUO J H, SHU P C, MEI J, LI X P, YAN W X. 1D/2D CoTe2@MoS2 composites constructed by CoTe2 nanorods and MoS2 nanosheets for efficient electromagnetic wave absorption[J]. Nano Res., 2023,16:10698-10706. doi: 10.1007/s12274-023-5777-9
-
[16]
LI Z C, YAN X X, TANG Z K, HUO Z Y, LI G L, JIAO L Y, LIU L M, ZHANG M, LUO J, ZHU J. Direct observation of multiple rotational stacking faults coexisting in freestanding bilayer MoS2[J]. Sci. Rep., 2017,78323. doi: 10.1038/s41598-017-07615-9
-
[17]
TRUONG N X, DIEN N T, TUE N N, KHANH D Q, MIKLÓS N, SHOAIB M, OTTÓ H. Effect of ruthenium modification of g-C3N4 in the visible-light-driven photocatalytic reduction of Cr(Ⅵ)[J]. Catalysts, 2023,13(6)964.
-
[18]
YU M, NIKOLAY K, LENNART V, PATRICIA J K, EMIEL J M H. Investigation of the active phase in K-promoted MoS2 catalysts for methanethiol synthesis[J]. ACS Catal., 2020,10(3):1838-1846.
-
[19]
SENTHILNATHAN S, GANESH K K, SUGUNRAJ S, AMMAL D M, RAJENDRAPRASAD M, SUGANTHI M, SHREE K K, SASIKUMAR P, MOHAMED A, WIREEN L T D. MoS2 modified g-C3N4 composite: A potential candidate for photocatalytic applications[J]. J. Saudi Chem. Soc., 2023,27(5)101717.
-
[20]
MOHAMMED A B, KHALED A, GUBRAN A, SUJAY SHEKAR G C, BASHEER M A, MAHMOOD M S A, AMAR A K, LOKANATH N K, NEPPOLIAN B, BHOJYA NAIK H S. Tailoring morphology and structure of 1D/2D isotype g-C3N4 for sonophotocatalytic hydrogen evaluation[J]. Surf. Interfaces, 2023,42103511.
-
[21]
XIE H Y, WANG K, LI S L, JIN Z L. Construction of Co9S8/MoS2/Ni2P double S-scheme heterojunction for enhanced photocatalytic hydrogen evolution[J]. Surf. Interfaces, 2023,42103353.
-
[22]
LI X B, XIONG J, GAO X M, MA J, CHEN Z, KANG B B, LIU J Y, LI H, FENG Z J, HUANG J T. Novel BP/BiOBr S-scheme nano-heterojunction for enhanced visible-light photocatalytic tetracycline removal and oxygen evolution activity[J]. J. Hazard. Mater., 2020,387121690.
-
[23]
YAO Y, SHEN Q H, CHEN Q F, HE Y Y, JIANG L B, LIU J, LI Y, CAO X D, YANG H. Ag/AgX (X=Cl, Br, or I) nanocomposite loaded on Ag3PO4 tetrapods as a photocatalyst for the degradation of contaminants[J]. ACS Appl. Nano Mater., 2024,7:3711-3723.
-
[24]
YU J S, HWANG J J, LEE J Y, HA D H, KIM J H. Tuning photoluminescence spectra of MoS2 with liquid crystals[J]. Nanoscale, 2021,13:16641-16648.
-
[25]
ADITYA S, MAYORA V, KEUN H C, SUNG O W. Mechanistic investigations on emission characteristics from g-C3N4, g-C3N4@Pt and g-C3N4@Ag nanostructures using X-ray absorption spectroscopy[J]. Curr. Appl. Phys., 2018,18(11):1458-1464.
-
[26]
QI H J, WANG C Y, SHEN L P, WANG H M, LIAN Y, ZHANG H X, MA H X, ZHANG Y, ZHANG J Z. α-NiS/g-C3N4 nanocomposites for photocatalytic hydrogen evolution and degradation of tetracycline hydrochloride[J]. Catalysts, 2023,13983.
-
[27]
DU H, GAO X H, MA Q X, YANG X J, ZHAO T S. Cu/PCN metal-semiconductor heterojunction by thermal reduction for photoreaction of CO2-aerated H2O to CH3OH and C2H5OH[J]. ACS Omega, 2022,7(19):16817-16826.
-
[28]
SHAO G L, LU Y H, HONG J H, XUE X X, HUANG J Q, XU Z Y, LU X C, JIN Y Y, LIU X, LI H M, HU S, KAZU S, HAN Z, JIANG Y, LI S S, FENG Y X, PAN A L, LIN Y C, CAO Y, LIU S. Seamlessly splicing metallic SnxMo1-xS2 at MoS2 edge for enhanced photoelectrocatalytic performance in microreactor[J]. Adv. Sci., 2020,7(24)2002172.
-
[29]
LI X B, KANG B B, DONG F, ZHANG Z Q, LUO X D, HAN L, HUANG J T, FENG Z J, CHEN Z, XU J L, PENG B L, WANG Z L. Enhanced photocatalytic degradation and H2/H2O2 production performance of S-pCN/WO2.72 S-scheme heterojunction with appropriate surface oxygen vacancies[J]. Nano Energy, 2021,81105671.
-
[30]
DU X Y, SONG S, WANG Y T, JIN W F, DING T, TIAN Y, LI X G. Facile one-pot synthesis of defect-engineered step-scheme WO3/g-C3N4 heterojunctions for efficient photocatalytic hydrogen production[J]. Catal. Sci. Technol., 2021,11:2734-2744.
-
[31]
ZHANG H J, DENG L, CHEN H, ZHANG Y T, LIU Y H, CHEN Y F, ZENG H X, SHI Z. How MoS2 assisted sulfur vacancies featured Cu2S in hollow Cu2S@MoS2 nanoboxes to activate H2O2 for efficient sulfadiazine degradation[J]. Chem. Eng. J., 2022,446137364.
-
[32]
SWEETY S, SEKHAR C R. Trigonal (1T) and hexagonal (2H) mixed phases MoS2 thin films[J]. Appl. Surf. Sci., 2019,474:227-231.
-
[33]
SHI Y N, CHEN J J, MAO Z Y, BRADLEY D F, WANG D J. Construction of Z-scheme heterostructure with enhanced photocatalytic H2 evolution for g-C3N4 nanosheets via loading porous silicon[J]. J. Catal., 2017,356:22-31.
-
[34]
XIONG W, DONG Y H, PAN A H. Fabricating a type Ⅱ heterojunction by growing lead-free perovskite Cs2AgBiBr6 in situ on graphite-like g-C3N4 nanosheets for enhanced photocatalytic CO2 reduction[J]. Nanoscale, 2023,15:15619-15625.
-
[35]
LUO X L, YUAN J H, LIU J H, HU H K, YANG Z Y, HOU X P, SUN Q, XU D. Construction of type Ⅱ ZnBi2O4/g-C3N4 heterojunction photocatalysts for efficient degradation of acid red B[J]. New J. Chem., 2023,47:21944-21959.
-
[36]
KEBENA G M, WU C, SZUTSEN L. Novel Ag3PO4@ZIF-8 p-n heterojunction for effective photodegradation of organic pollutants[J]. J. Water Process Eng., 2023,52103586.
-
[37]
HASEEB U, ZAHID H, ABRAR A, IAN S B, REBWAR N D, ZIAUR R. MoS2 and CdS photocatalysts for water decontamination: A review[J]. Inorg. Chem. Commun., 2023,153110775.
-
[1]
-
-
-
[1]
Zhinan GUO , Junli WANG , Qiang ZHAO , Zhifang JIA , Zuopeng LI , Kewei WANG , Yong GUO . Cu2O/Bi2CrO6 Z-scheme heterojunction: Construction and photocatalytic degradation properties for tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 741-752. doi: 10.11862/CJIC.20240403
-
[2]
Chunyan Yang , Qiuyu Rong , Fengyin Shi , Menghan Cao , Guie Li , Yanjun Xin , Wen Zhang , Guangshan Zhang . Rationally designed S-scheme heterojunction of BiOCl/g-C3N4 for photodegradation of sulfamerazine: Mechanism insights, degradation pathways and DFT calculation. Chinese Chemical Letters, 2024, 35(12): 109767-. doi: 10.1016/j.cclet.2024.109767
-
[3]
Jimin HOU , Mengyang LI , Chunhua GONG , Shaozhuang ZHANG , Caihong ZHAN , Hao XU , Jingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348
-
[4]
Kai Han , Guohui Dong , Ishaaq Saeed , Tingting Dong , Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208
-
[5]
Zhi Zhu , Xiaohan Xing , Qi Qi , Wenjing Shen , Hongyue Wu , Dongyi Li , Binrong Li , Jialin Liang , Xu Tang , Jun Zhao , Hongping Li , Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194
-
[6]
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
-
[7]
Xingmin Chen , Yunyun Wu , Yao Tang , Peishen Li , Shuai Gao , Qiang Wang , Wen Liu , Sihui Zhan . Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chinese Chemical Letters, 2024, 35(7): 109245-. doi: 10.1016/j.cclet.2023.109245
-
[8]
Yingqi BAI , Hua ZHAO , Huipeng LI , Xinran REN , Jun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259
-
[9]
Teng Wang , Jiachun Cao , Juan Li , Didi Li , Zhimin Ao . A novel photocatalytic mechanism of volatile organic compounds degradation on BaTiO3 under visible light: Photo-electrons transfer from photocatalyst to pollutant. Chinese Chemical Letters, 2025, 36(3): 110078-. doi: 10.1016/j.cclet.2024.110078
-
[10]
Qinwen Zheng , Xin Liu , Lintao Tian , Yi Zhou , Libing Liao , Guocheng Lv . Mechanism of Fenton catalytic degradation of Rhodamine B induced by microwave and Fe3O4. Chinese Chemical Letters, 2025, 36(4): 109771-. doi: 10.1016/j.cclet.2024.109771
-
[11]
Liang Ma , Zhou Li , Zhiqiang Jiang , Xiaofeng Wu , Shixin Chang , Sónia A. C. Carabineiro , Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416
-
[12]
Fengrui Yang , Debing Wang , Xinying Zhang , Jie Zhang , Zhichao Wu , Qiaoying Wang . Synergistic effects of peroxydisulfate on UV/O3 process for tetracycline degradation: Mechanism and pathways. Chinese Chemical Letters, 2024, 35(10): 109599-. doi: 10.1016/j.cclet.2024.109599
-
[13]
Xinzhe HUANG , Lihui XU , Yue YANG , Liming WANG , Zhangyong LIU , Zhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212
-
[14]
Weichen Zhu , Wei Zuo , Pu Wang , Wei Zhan , Jun Zhang , Lipin Li , Yu Tian , Hong Qi , Rui Huang . Fe-N-C heterogeneous Fenton-like catalyst for the degradation of tetracycline: Fe-N coordination and mechanism studies. Chinese Chemical Letters, 2024, 35(9): 109341-. doi: 10.1016/j.cclet.2023.109341
-
[15]
Xin Jiang , Han Jiang , Yimin Tang , Huizhu Zhang , Libin Yang , Xiuwen Wang , Bing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415
-
[16]
Xinlong Zheng , Zhongyun Shao , Jiaxin Lin , Qizhi Gao , Zongxian Ma , Yiming Song , Zhen Chen , Xiaodong Shi , Jing Li , Weifeng Liu , Xinlong Tian , Yuhao Liu . Recent advances of CuSbS2 and CuPbSbS3 as photocatalyst in the application of photocatalytic hydrogen evolution and degradation. Chinese Chemical Letters, 2025, 36(3): 110533-. doi: 10.1016/j.cclet.2024.110533
-
[17]
Yun-Xin Huang , Lin-Qian Yu , Ke-Yu Chen , Hao Wang , Shou-Yan Zhao , Bao-Cheng Huang , Ren-Cun Jin . Biochar with self-doped N to activate peroxymonosulfate for bisphenol-A degradation via electron transfer mechanism: The active edge graphitic N site. Chinese Chemical Letters, 2024, 35(9): 109437-. doi: 10.1016/j.cclet.2023.109437
-
[18]
Wenhao Wang , Guangpu Zhang , Qiufeng Wang , Fancang Meng , Hongbin Jia , Wei Jiang , Qingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193
-
[19]
Hualin Jiang , Wenxi Ye , Huitao Zhen , Xubiao Luo , Vyacheslav Fominski , Long Ye , Pinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984
-
[20]
Xiaotao Jin , Yanlan Wang , Yingping Huang , Di Huang , Xiang Liu . Percarbonate activation catalyzed by nanoblocks of basic copper molybdate for antibiotics degradation: High performance, degradation pathways and mechanism. Chinese Chemical Letters, 2024, 35(10): 109499-. doi: 10.1016/j.cclet.2024.109499
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(38)
- HTML views(5)