Citation: Qingwang LIU. MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148 shu

MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance

  • Received Date: 28 April 2024
    Revised Date: 2 March 2025

Figures(9)

  • MoS2/Ag/g-C3N4 composite photocatalysts were prepared via hydrothermal synthesis, and a series of analytical methods were employed for systematic characterization. The results indicate that the significant enhancement in catalytic degradation activity is attributed to the formation of Z-scheme heterojunction, which effectively facilitates the transport and separation of photogenerated charge carriers while suppressing the recombination of photogenerated electron and hole pairs. Degradation experiments demonstrated that the prepared composite material achieved a degradation rate of up to 98% for rhodamine B (RhB) within 120 min, exhibiting superior photocatalytic performance compared to individual photocatalysts. Furthermore, capture experiments and electron paramagnetic resonance (EPR) results revealed that superoxide radicals (·O2-) and photogenerated holes (h+) were the key active species in the photocatalytic degradation of RhB. Finally, an in-depth discussion of the photocatalytic degradation mechanism of the composite material was conducted.
  • 加载中
    1. [1]

      ZHAO B B, ZHONG W, CHEN F, WANG P, BIE C B, YU H G. High-crystalline g-C3N4 photocatalysts: Synthesis, structure modulation, and H2-evolution application[J]. Chin. J. Catal., 2023,52:127-143. doi: 10.1016/S1872-2067(23)64491-2

    2. [2]

      NGUYEN T K A, PHAM T T, GENDENSUREN B, OH E S, SHIN E W. Defect engineering of water-dispersible g-C3N4 photocatalysts by chemical oxidative etching of bulk g-C3N4 prepared in different calcination atmospheres[J]. J. Mater. Sci. Technol., 2022,103:232-243. doi: 10.1016/j.jmst.2021.07.013

    3. [3]

      MISHRA A, MEHTA A, BASU S, SHETTI N P, REDDY K R, AMINABHAVI T M. Graphitic carbon nitride (g-C3N4)-based metal-free photocatalysts for water splitting: A review[J]. Carbon, 2019,149:693-721. doi: 10.1016/j.carbon.2019.04.104

    4. [4]

      NIUY Q, HU F G, XU H L, ZHANG S Z, SONG B, WANG H L, LI M L, SHAO G, WANG H L, LU H X. Exploration for high performance g-C3N4 photocatalyst from different precursors[J]. Mater. Today Commun., 2023,34105040. doi: 10.1016/j.mtcomm.2022.105040

    5. [5]

      LIU S Z, WANG S B, JIANG Y, ZHAO Z Q, JIANG G Y, SUN Z Y. Synthesis of Fe2O3 loaded porous g-C3N4 photocatalyst for photocatalytic reduction of dinitrogen to ammonia[J]. Chem. Eng. J., 2019,373:572-579. doi: 10.1016/j.cej.2019.05.021

    6. [6]

      KONG L R, WANG J G, MU X J, RUI LI, LI X X, FAN X X, SONG P, MA F C, SUN M T. Porous size dependent g-C3N4 for efficient photocatalysts: Regulation synthesizes and physical mechanism[J]. Mater. Today Energy, 2019,13:11-21. doi: 10.1016/j.mtener.2019.04.011

    7. [7]

      CUI L, LIU S L, WANG F K, LI J Y, SONGY H, SHENGY , ZOU H F. Growth of uniform g-C3N4 shells on 1D TiO2 nanofibers via vapor deposition approach with enhanced visible light photocatalytic activity[J]. J. Alloy. Compd., 2020,826154001. doi: 10.1016/j.jallcom.2020.154001

    8. [8]

      LIU Q W, MENG Y, LIU Q M, XU M, HU Y H, CHEN S K. Synthesis of Ag3PO4/Ag/g-C3N4 composite for enhanced photocatalytic degradation of methyl orange[J]. Molecules, 2023,28(16)6082. doi: 10.3390/molecules28166082

    9. [9]

      WANG Y Y, YANG X J, LOU J H. Enhance ZnO photocatalytic performance via radiation modified g-C3N4[J]. Molecules, 2022,27(23)8476. doi: 10.3390/molecules27238476

    10. [10]

      FELLIPE M C, CAUE R, EDUARDO B A. Improving g-C3N4:WO3 Z-scheme photocatalytic performance under visible light by multivariate optimization of g-C3N4 synthesis[J]. Appl. Surf. Sci., 2021,537147904. doi: 10.1016/j.apsusc.2020.147904

    11. [11]

      CHEN S K, JIANG D C, CAO Y M, ZENG G, CHI H B, MIAO Y X, ZHANG Y F, LI L, HE Y X, KE F, YE S. Doping and heterojunction construction dual-regulation: Magnetically recoverable CoFe1.9Y0.1O4/g-C3N4 nanosheets with enhanced visible-light-driven photocatalytic activity[J]. Mater. Lett., 2021,287129275. doi: 10.1016/j.matlet.2020.129275

    12. [12]

      JU L, LIU C, SHI L R, SUN L. The high-speed channel made of metal for interfacial charge transfer in Z-scheme g-C3N4/MoS2 water-splitting photocatalyst[J]. Mater. Res. Express, 2019,6115545. doi: 10.1088/2053-1591/ab509c

    13. [13]

      ZHOU D F, QIU C Q. Study on the effect of Co doping concentration on optical properties of g-C3N4[J]. Chem. Phys. Lett., 2019,728:70-73. doi: 10.1016/j.cplett.2019.04.060

    14. [14]

      MAGED S, EL-BORADY O M, EL-HOSAINY M, MAGED E K. Efficient photocatalytic reduction of p-nitrophenol under visible light irradiation based on Ag NPs loaded brown 2D g-C3N4/g-C3N4 QDs nanocomposite[J]. Environ. Sci. Pollut. Res., 2023,30:117909-117922. doi: 10.1007/s11356-023-30010-z

    15. [15]

      ZHAI N X, LUO J H, SHU P C, MEI J, LI X P, YAN W X. 1D/2D CoTe2@MoS2 composites constructed by CoTe2 nanorods and MoS2 nanosheets for efficient electromagnetic wave absorption[J]. Nano Res., 2023,16:10698-10706. doi: 10.1007/s12274-023-5777-9

    16. [16]

      LI Z C, YAN X X, TANG Z K, HUO Z Y, LI G L, JIAO L Y, LIU L M, ZHANG M, LUO J, ZHU J. Direct observation of multiple rotational stacking faults coexisting in freestanding bilayer MoS2[J]. Sci. Rep., 2017,78323. doi: 10.1038/s41598-017-07615-9

    17. [17]

      TRUONG N X, DIEN N T, TUE N N, KHANH D Q, MIKLÓS N, SHOAIB M, OTTÓ H. Effect of ruthenium modification of g-C3N4 in the visible-light-driven photocatalytic reduction of Cr(Ⅵ)[J]. Catalysts, 2023,13(6)964.

    18. [18]

      YU M, NIKOLAY K, LENNART V, PATRICIA J K, EMIEL J M H. Investigation of the active phase in K-promoted MoS2 catalysts for methanethiol synthesis[J]. ACS Catal., 2020,10(3):1838-1846.

    19. [19]

      SENTHILNATHAN S, GANESH K K, SUGUNRAJ S, AMMAL D M, RAJENDRAPRASAD M, SUGANTHI M, SHREE K K, SASIKUMAR P, MOHAMED A, WIREEN L T D. MoS2 modified g-C3N4 composite: A potential candidate for photocatalytic applications[J]. J. Saudi Chem. Soc., 2023,27(5)101717.

    20. [20]

      MOHAMMED A B, KHALED A, GUBRAN A, SUJAY SHEKAR G C, BASHEER M A, MAHMOOD M S A, AMAR A K, LOKANATH N K, NEPPOLIAN B, BHOJYA NAIK H S. Tailoring morphology and structure of 1D/2D isotype g-C3N4 for sonophotocatalytic hydrogen evaluation[J]. Surf. Interfaces, 2023,42103511.

    21. [21]

      XIE H Y, WANG K, LI S L, JIN Z L. Construction of Co9S8/MoS2/Ni2P double S-scheme heterojunction for enhanced photocatalytic hydrogen evolution[J]. Surf. Interfaces, 2023,42103353.

    22. [22]

      LI X B, XIONG J, GAO X M, MA J, CHEN Z, KANG B B, LIU J Y, LI H, FENG Z J, HUANG J T. Novel BP/BiOBr S-scheme nano-heterojunction for enhanced visible-light photocatalytic tetracycline removal and oxygen evolution activity[J]. J. Hazard. Mater., 2020,387121690.

    23. [23]

      YAO Y, SHEN Q H, CHEN Q F, HE Y Y, JIANG L B, LIU J, LI Y, CAO X D, YANG H. Ag/AgX (X=Cl, Br, or I) nanocomposite loaded on Ag3PO4 tetrapods as a photocatalyst for the degradation of contaminants[J]. ACS Appl. Nano Mater., 2024,7:3711-3723.

    24. [24]

      YU J S, HWANG J J, LEE J Y, HA D H, KIM J H. Tuning photoluminescence spectra of MoS2 with liquid crystals[J]. Nanoscale, 2021,13:16641-16648.

    25. [25]

      ADITYA S, MAYORA V, KEUN H C, SUNG O W. Mechanistic investigations on emission characteristics from g-C3N4, g-C3N4@Pt and g-C3N4@Ag nanostructures using X-ray absorption spectroscopy[J]. Curr. Appl. Phys., 2018,18(11):1458-1464.

    26. [26]

      QI H J, WANG C Y, SHEN L P, WANG H M, LIAN Y, ZHANG H X, MA H X, ZHANG Y, ZHANG J Z. α-NiS/g-C3N4 nanocomposites for photocatalytic hydrogen evolution and degradation of tetracycline hydrochloride[J]. Catalysts, 2023,13983.

    27. [27]

      DU H, GAO X H, MA Q X, YANG X J, ZHAO T S. Cu/PCN metal-semiconductor heterojunction by thermal reduction for photoreaction of CO2-aerated H2O to CH3OH and C2H5OH[J]. ACS Omega, 2022,7(19):16817-16826.

    28. [28]

      SHAO G L, LU Y H, HONG J H, XUE X X, HUANG J Q, XU Z Y, LU X C, JIN Y Y, LIU X, LI H M, HU S, KAZU S, HAN Z, JIANG Y, LI S S, FENG Y X, PAN A L, LIN Y C, CAO Y, LIU S. Seamlessly splicing metallic SnxMo1-xS2 at MoS2 edge for enhanced photoelectrocatalytic performance in microreactor[J]. Adv. Sci., 2020,7(24)2002172.

    29. [29]

      LI X B, KANG B B, DONG F, ZHANG Z Q, LUO X D, HAN L, HUANG J T, FENG Z J, CHEN Z, XU J L, PENG B L, WANG Z L. Enhanced photocatalytic degradation and H2/H2O2 production performance of S-pCN/WO2.72 S-scheme heterojunction with appropriate surface oxygen vacancies[J]. Nano Energy, 2021,81105671.

    30. [30]

      DU X Y, SONG S, WANG Y T, JIN W F, DING T, TIAN Y, LI X G. Facile one-pot synthesis of defect-engineered step-scheme WO3/g-C3N4 heterojunctions for efficient photocatalytic hydrogen production[J]. Catal. Sci. Technol., 2021,11:2734-2744.

    31. [31]

      ZHANG H J, DENG L, CHEN H, ZHANG Y T, LIU Y H, CHEN Y F, ZENG H X, SHI Z. How MoS2 assisted sulfur vacancies featured Cu2S in hollow Cu2S@MoS2 nanoboxes to activate H2O2 for efficient sulfadiazine degradation[J]. Chem. Eng. J., 2022,446137364.

    32. [32]

      SWEETY S, SEKHAR C R. Trigonal (1T) and hexagonal (2H) mixed phases MoS2 thin films[J]. Appl. Surf. Sci., 2019,474:227-231.

    33. [33]

      SHI Y N, CHEN J J, MAO Z Y, BRADLEY D F, WANG D J. Construction of Z-scheme heterostructure with enhanced photocatalytic H2 evolution for g-C3N4 nanosheets via loading porous silicon[J]. J. Catal., 2017,356:22-31.

    34. [34]

      XIONG W, DONG Y H, PAN A H. Fabricating a type Ⅱ heterojunction by growing lead-free perovskite Cs2AgBiBr6 in situ on graphite-like g-C3N4 nanosheets for enhanced photocatalytic CO2 reduction[J]. Nanoscale, 2023,15:15619-15625.

    35. [35]

      LUO X L, YUAN J H, LIU J H, HU H K, YANG Z Y, HOU X P, SUN Q, XU D. Construction of type Ⅱ ZnBi2O4/g-C3N4 heterojunction photocatalysts for efficient degradation of acid red B[J]. New J. Chem., 2023,47:21944-21959.

    36. [36]

      KEBENA G M, WU C, SZUTSEN L. Novel Ag3PO4@ZIF-8 p-n heterojunction for effective photodegradation of organic pollutants[J]. J. Water Process Eng., 2023,52103586.

    37. [37]

      HASEEB U, ZAHID H, ABRAR A, IAN S B, REBWAR N D, ZIAUR R. MoS2 and CdS photocatalysts for water decontamination: A review[J]. Inorg. Chem. Commun., 2023,153110775.

  • 加载中
    1. [1]

      Zhinan GUOJunli WANGQiang ZHAOZhifang JIAZuopeng LIKewei WANGYong GUO . Cu2O/Bi2CrO6 Z-scheme heterojunction: Construction and photocatalytic degradation properties for tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 741-752. doi: 10.11862/CJIC.20240403

    2. [2]

      Chunyan YangQiuyu RongFengyin ShiMenghan CaoGuie LiYanjun XinWen ZhangGuangshan Zhang . Rationally designed S-scheme heterojunction of BiOCl/g-C3N4 for photodegradation of sulfamerazine: Mechanism insights, degradation pathways and DFT calculation. Chinese Chemical Letters, 2024, 35(12): 109767-. doi: 10.1016/j.cclet.2024.109767

    3. [3]

      Jimin HOUMengyang LIChunhua GONGShaozhuang ZHANGCaihong ZHANHao XUJingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348

    4. [4]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    5. [5]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    6. [6]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    7. [7]

      Xingmin ChenYunyun WuYao TangPeishen LiShuai GaoQiang WangWen LiuSihui Zhan . Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chinese Chemical Letters, 2024, 35(7): 109245-. doi: 10.1016/j.cclet.2023.109245

    8. [8]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    9. [9]

      Teng WangJiachun CaoJuan LiDidi LiZhimin Ao . A novel photocatalytic mechanism of volatile organic compounds degradation on BaTiO3 under visible light: Photo-electrons transfer from photocatalyst to pollutant. Chinese Chemical Letters, 2025, 36(3): 110078-. doi: 10.1016/j.cclet.2024.110078

    10. [10]

      Qinwen ZhengXin LiuLintao TianYi ZhouLibing LiaoGuocheng Lv . Mechanism of Fenton catalytic degradation of Rhodamine B induced by microwave and Fe3O4. Chinese Chemical Letters, 2025, 36(4): 109771-. doi: 10.1016/j.cclet.2024.109771

    11. [11]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    12. [12]

      Fengrui YangDebing WangXinying ZhangJie ZhangZhichao WuQiaoying Wang . Synergistic effects of peroxydisulfate on UV/O3 process for tetracycline degradation: Mechanism and pathways. Chinese Chemical Letters, 2024, 35(10): 109599-. doi: 10.1016/j.cclet.2024.109599

    13. [13]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    14. [14]

      Weichen ZhuWei ZuoPu WangWei ZhanJun ZhangLipin LiYu TianHong QiRui Huang . Fe-N-C heterogeneous Fenton-like catalyst for the degradation of tetracycline: Fe-N coordination and mechanism studies. Chinese Chemical Letters, 2024, 35(9): 109341-. doi: 10.1016/j.cclet.2023.109341

    15. [15]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    16. [16]

      Xinlong ZhengZhongyun ShaoJiaxin LinQizhi GaoZongxian MaYiming SongZhen ChenXiaodong ShiJing LiWeifeng LiuXinlong TianYuhao Liu . Recent advances of CuSbS2 and CuPbSbS3 as photocatalyst in the application of photocatalytic hydrogen evolution and degradation. Chinese Chemical Letters, 2025, 36(3): 110533-. doi: 10.1016/j.cclet.2024.110533

    17. [17]

      Yun-Xin HuangLin-Qian YuKe-Yu ChenHao WangShou-Yan ZhaoBao-Cheng HuangRen-Cun Jin . Biochar with self-doped N to activate peroxymonosulfate for bisphenol-A degradation via electron transfer mechanism: The active edge graphitic N site. Chinese Chemical Letters, 2024, 35(9): 109437-. doi: 10.1016/j.cclet.2023.109437

    18. [18]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    19. [19]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    20. [20]

      Xiaotao JinYanlan WangYingping HuangDi HuangXiang Liu . Percarbonate activation catalyzed by nanoblocks of basic copper molybdate for antibiotics degradation: High performance, degradation pathways and mechanism. Chinese Chemical Letters, 2024, 35(10): 109499-. doi: 10.1016/j.cclet.2024.109499

Metrics
  • PDF Downloads(0)
  • Abstract views(37)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return