Citation: Qiaoqiao BAI, Anqi ZHOU, Xiaowei LI, Tang LIU, Song LIU. Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128 shu

Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine

Figures(5)

  • The review summarizes the recent research progress of pressure-temperature dual-functional flexible sensors, including the sensing mechanisms, the design of dual-functional sensors, and their applications in biomedicine. The sensing mechanisms of the sensors include electrical signal mechanisms (resistance, voltage, and capacitance mechanisms) and non-electrical signal mechanisms (optical and magnetic mechanisms). Then, the design strategies of pressure-temperature dual-functional flexible sensors are discussed, including the integration of different types of sensors and the design of single dual-functional sensors composed of multifunctional materials and microstructures. Finally, the applications of pressure-temperature dual-functional flexible sensors in human motion detection, health monitoring, artificial intelligence, and human-machine interaction are introduced. Based on this, the problems of dual-functional flexible sensors are summarized, and the future development prospects are discussed.
  • 加载中
    1. [1]

      Wang P, Yu W, Li G X, Meng C Z, Guo S J. Printable, flexible, breathable and sweatproof bifunctional sensors based on an all-nanofiber platform for fully decoupled pressure-temperature sensing application[J]. Chem. Eng. J., 2023,452139174. doi: 10.1016/j.cej.2022.139174

    2. [2]

      Chen J X, Wen H J, Zhang G L, Lei F, Feng Q, Liu Y, Cao X D, Dong H. Multifunctional conductive hydrogel/thermochromic elastomer hybrid fibers with a core-shell segmental configuration for wearable strain and temperature sensors[J]. ACS Appl. Mater. Interfaces, 2020,12(6):7565-7574. doi: 10.1021/acsami.9b20612

    3. [3]

      Xie Y S, Xie R, Yang H C, Chen Z W, Hou J W, López-Barrón C R, Wagner N J, Gao K Z. Iono-elastomer-based wearable strain sensor with real-time thermomechanical dual response[J]. ACS Appl. Mater. Interfaces, 2018,10(38):32435-32443. doi: 10.1021/acsami.8b10672

    4. [4]

      Chen J W, Wang F, Zhu G X, Wang C B, Cui X H, Xi M, Chang X H, Zhu Y T. Breathable strain/temperature sensor based on fibrous networks of ionogels capable of monitoring human motion, respiration, and proximity[J]. ACS Appl. Mater. Interfaces, 2021,13(43):51567-51577. doi: 10.1021/acsami.1c16733

    5. [5]

      Lin M Z, Zheng Z J, Yang L, Luo M S, Fu L H, Lin B F, Xu C H. A high-performance, sensitive, wearable multifunctional sensor based on rubber/CNT for human motion and skin temperature detection[J]. Adv. Mater., 2022,34(1)2107309. doi: 10.1002/adma.202107309

    6. [6]

      Pang Z J, Zhao Y, Luo N Q, Chen D H, Chen M. Flexible pressure and temperature dual-mode sensor based on buckling carbon nanofibers for respiration pattern recognition[J]. Sci. Rep., 2022,12(1)17434. doi: 10.1038/s41598-022-21572-y

    7. [7]

      Oh Y S, Kim J H, Xie Z Q, Cho S, Han H, Jeon S W, Park M, Namkoong M, Avila R, Song Z, Lee S U, Ko K, Lee J, Lee J S, Min W G, Lee B J, Choi M, Chung H, Kim J, Han M D, Koo J, Choi Y S, Kwak S S, Kim SB, Kim J, Choi J, Kang C M, Kim J U, Kwon K, Won S M, Baek J M, Lee Y, Kim S Y, Lu W, Vazquez-Guardado A, Jeong H, Ryu H, Lee G, Kim K, Kim S, Kim M S, Choi J, Choi D Y, Yang Q S, Zhao H B, Bai W B, Jang H, Yu Y, Lim J, Guo X, Kim B H, Jeon S, Davies C, Banks A, Sung H J, Huang Y, Park I, Rogers J A. Battery-free, wireless soft sensors for continuous multi-site measurements of pressure and temperature from patients at risk for pressure injuries[J]. Nat. Commun., 2021,12(1)5008. doi: 10.1038/s41467-021-25324-w

    8. [8]

      Zhang F J, Zang Y P, Huang D Z, Di C A, Zhu D B. Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials[J]. Nat. Commun., 2015,6(1)8356. doi: 10.1038/ncomms9356

    9. [9]

      Yin Y M, Wang Y L, Li H Y, Xu J, Zhang C, Li X, Cao J W, Feng H F, Zhu G. A flexible dual parameter sensor with hierarchical porous structure for fully decoupled pressure-temperature sensing[J]. Chem. Eng. J., 2022,430133158. doi: 10.1016/j.cej.2021.133158

    10. [10]

      Chen Y F, Lei H, Gao Z Q, Liu J Y, Zhang F J, Wen Z, Sun X H. Energy autonomous electronic skin with direct temperature-pressure perception[J]. Nano Energy, 2022,98107273. doi: 10.1016/j.nanoen.2022.107273

    11. [11]

      Ma X L, Wang C F, Wei R L, He J Q, Li J, Liu X H, Huang F C, Ge S P, Tao J, Yuan Z Q, Chen P, Peng D F, Pan C F. Bimodal tactile sensor without signal fusion for user-interactive applications[J]. ACS Nano, 2022,16(2):2789-2797. doi: 10.1021/acsnano.1c09779

    12. [12]

      Lee S, Franklin S, Hassani F A, Yokota T, Nayeem M O G, Wang Y, Leib R, Cheng G, Franklin D W, Someya T. Nanomesh pressure sensor for monitoring finger manipulation without sensory interference[J]. Science, 2020,370(6519):966-970. doi: 10.1126/science.abc9735

    13. [13]

      Huang Y X, Peng C, Li Y, Yang Y Z, Feng W. Elastomeric polymers for conductive layers of flexible sensors: Materials, fabrication, performance, and applications[J]. Aggregate, 2023,4(4)e319. doi: 10.1002/agt2.319

    14. [14]

      Zhang Y, Yang J L, Hou X Y, Li G, Wang L, Bai N N, Cai M K, Zhao L Y, Wang Y, Zhang J M, Chen K, Wu X, Yang C H, Dai Y, Zhang Z Y, Guo C F. Highly stable flexible pressure sensors with a quasi-homogeneous composition and interlinked interfaces[J]. Nat. Commun., 2022,13(1)1317. doi: 10.1038/s41467-022-29093-y

    15. [15]

      Chen R, Luo T, Wang J C, Wang R P, Zhang C, Xie Y, Qin L F, Yao H M, Zhou W. Nonlinearity synergy: An elegant strategy for realizing high-sensitivity and wide-linear-range pressure sensing[J]. Nat. Commun., 2023,14(1)6641. doi: 10.1038/s41467-023-42361-9

    16. [16]

      Ha K H, Zhang W Y, Jang H, Kang S, Wang L, Tan P, Hwang H, Lu N S. Highly sensitive capacitive pressure sensors over a wide pressure range enabled by the hybrid responses of a highly porous nanocomposite[J]. Adv. Mater., 2021,33(48)2103320. doi: 10.1002/adma.202103320

    17. [17]

      Sun X, Qin Z H, Ye L, Zhang H T, Yu Q Y, Wu X J, Li J J, Yao F L. Carbon nanotubes reinforced hydrogel as flexible strain sensor with high stretchability and mechanically toughness[J]. Chem. Eng. J., 2020,382122832. doi: 10.1016/j.cej.2019.122832

    18. [18]

      Chen J, Zhang J J, Luo Z B, Zhang J Y, Li L, Su Y, Gao X, Li Y T, Tang W, Cao C J, Liu Q H, Wang L, Li H. Superelastic, sensitive, and low hysteresis flexible strain sensor based on wave-patterned liquid metal for human activity monitoring[J]. ACS Appl. Mater. Interfaces, 2020,12(19):22200-22211. doi: 10.1021/acsami.0c04709

    19. [19]

      Yao X, Zhang S F, Qian L W, Wei N, Nica V, Coseri S, Han F. Super stretchable, self-healing, adhesive ionic conductive hydrogels based on tailor-made ionic liquid for high-performance strain sensors[J]. Adv. Funct. Mater., 2022,32(33)2204565. doi: 10.1002/adfm.202204565

    20. [20]

      Shin J, Jeong B, Kim J, Nam V B, Yoon Y, Jung J, Hong S, Lee H, Eom H, Yeo J, Choi J, Lee D, Ko S H. Sensitive wearable temperature sensor with seamless monolithic integration[J]. Adv. Mater., 2020,32(2)1905527. doi: 10.1002/adma.201905527

    21. [21]

      Lu Y F, Zhang H J, Zhao Y, Liu H D, Nie Z T, Xu F, Zhu J X, Huang W. Robust fiber-shaped flexible temperature sensors for safety monitoring with ultrahigh sensitivity[J]. Adv. Mater., 20242310613.

    22. [22]

      Lu Y Y, Yang G, Shen Y J, Yang H Y, Xu K C. Multifunctional flexible humidity sensor systems towards noncontact wearable electronics[J]. Nanomicro Lett., 2022,14(1)150.

    23. [23]

      Wang D Y, Zhang D Z, Li P, Yang Z M, Mi Q, Yu L D. Electrospinning of flexible poly(vinyl alcohol)/MXene nanofiber-based humidity sensor self-powered by monolayer molybdenum diselenide piezoelectric nanogenerator[J]. Nanomicro Lett., 2021,13(1)57.

    24. [24]

      Zhang D Z, Xu Z Y, Yang Z M, Song X S. High-performance flexible self-powered tin disulfide nanoflowers/reduced graphene oxide nanohybrid-based humidity sensor driven by triboelectric nanogenerator[J]. Nano Energy, 2020,67104251. doi: 10.1016/j.nanoen.2019.104251

    25. [25]

      Yi N, Cheng Z, Li H, Yang L, Zhu J, Zheng X Q, Chen Y, Liu Z D, Zhu H L, Cheng H Y. Stretchable, ultrasensitive, and low-temperature NO2 sensors based on MoS2@rGO nanocomposites[J]. Mater. Today Phys., 2020,15100265. doi: 10.1016/j.mtphys.2020.100265

    26. [26]

      Wu Z X, Ding Q L, Wang H, Ye J D, Luo Y B, Yu J H, Zhan R Z, Zhang H, Tao K, Liu C, Wu J. A humidity-resistant, sensitive, and stretchable hydrogel-based oxygen sensor for wireless health and environmental monitoring[J]. Adv. Funct. Mater., 2024,34(6)2308280. doi: 10.1002/adfm.202308280

    27. [27]

      Yang R X, Zhang W Q, Tiwari N, Yan H, Li T J, Cheng H Y. Multimodal sensors with decoupled sensing mechanisms[J]. Adv. Sci., 2022,9(26)2202470. doi: 10.1002/advs.202202470

    28. [28]

      Zhu J X, Zhang X M, Wang R, Wang M, Chen P, Cheng L L, Wu Z H, Wang Y Z, Liu Q, Liu M. A heterogeneously integrated spiking neuron array for multimode-fused perception and object classification[J]. Adv. Mater., 2022,34(24)2200481. doi: 10.1002/adma.202200481

    29. [29]

      Han H, Oh Y S, Cho S, Park H, Lee S U, Ko K, Park J M, Choi J, Ha J H, Han C, Zhao Z C, Liu Z J, Xie Z Q, Lee J S, Min W G, Lee B J, Koo J, Choi D Y, Je M, Sun J Y, Park I. Battery-free, wireless, ionic liquid sensor arrays to monitor pressure and temperature of patients in bed and wheelchair[J]. Small, 2023,19(9)2205048. doi: 10.1002/smll.202205048

    30. [30]

      Chen Z X, Yang Z T, Yu T Y, Wei Z B, Ji C, Zhao B B, Yu T, Yang W D, Li Y. Sandwich-structured flexible PDMS@graphene multimodal sensors capable of strain and temperature monitoring with superlative temperature range and sensitivity[J]. Compos. Sci. Technol., 2023,232109881. doi: 10.1016/j.compscitech.2022.109881

    31. [31]

      Yang W T, Xie M Y, Zhang X S, Sun X Y, Zhou C, Chang Y, Zhang H N, Duan X X. Multifunctional soft robotic finger based on a nanoscale flexible temperature-pressure tactile sensor for material recognition[J]. ACS Appl. Mater. Interfaces, 2021,13(46):55756-55765. doi: 10.1021/acsami.1c17923

    32. [32]

      Zheng Q B, Lee J H, Shen X, Chen X D, Kim J K. Graphene-based wearable piezoresistive physical sensors[J]. Mater. Today, 2020,36:158-179. doi: 10.1016/j.mattod.2019.12.004

    33. [33]

      Cheng L, Qian W, Wei L, Zhang H J, Zhao T Y, Li M, Liu A P, Wu H P. A highly sensitive piezoresistive sensor with interlocked graphene microarrays for meticulous monitoring of human motions[J]. J. Mater. Chem. C, 2020,8(33):11525-11531. doi: 10.1039/D0TC02539A

    34. [34]

      Li F, Xue H, Lin X Z, Zhao H R, Zhang T. Wearable temperature sensor with high resolution for skin temperature monitoring[J]. ACS Appl. Mater. Interfaces, 2022,14(38):43844-43852. doi: 10.1021/acsami.2c15687

    35. [35]

      Fan W, Liu T, Wu F, Wang S J, Ge S B, Li Y H, Liu J L, Ye H R, Lei R X, Wang C, Che Q L, Li Y. An antisweat interference and highly sensitive temperature sensor based on poly(3, 4-ethylenedioxythiophene)-poly(styrenesulfonate) fiber coated with polyurethane/graphene for real-time monitoring of body temperature[J]. ACS Nano, 2023,17(21):21073-21082. doi: 10.1021/acsnano.3c04246

    36. [36]

      Duan S S, Wu J, Xia J, Lei W. Innovation strategy selection facilitates high-performance flexible piezoelectric sensors[J]. Sensors, 2020,20(10)2820. doi: 10.3390/s20102820

    37. [37]

      Hosseini E S. , Manjakkal L, Shakthivel D, Dahiya R[J]. Glycine-chitosan-based flexible biodegradable piezoelectric pressure sensor. ACS Appl. Mater. Interfaces, 2020,12(8):9008-9016.

    38. [38]

      Zhou P R, Zheng Z P, Wang B Q, Guo Y P. Self-powered flexible piezoelectric sensors based on self-assembled 10 nm BaTiO₃ nanocubes on glass fiber fabric[J]. Nano Energy, 2022,99107400. doi: 10.1016/j.nanoen.2022.107400

    39. [39]

      Lei H, Chen Y F, Gao Z Q, Wen Z, Sun X H. Advances in self-powered triboelectric pressure sensors[J]. J. Mater. Chem. A, 2021,9(36):20100-20130. doi: 10.1039/D1TA03505C

    40. [40]

      Fan F R, Tian Z Q, Wang Z L. Flexible triboelectric generator[J]. Nano Energy, 2012,1(2):328-334. doi: 10.1016/j.nanoen.2012.01.004

    41. [41]

      Fan F R, Lin L, Zhu G, Wu W Z, Zhang R, Wang Z L. Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films[J]. Nano Lett., 2012,12(6):3109-3114. doi: 10.1021/nl300988z

    42. [42]

      Zhang M D, Tan Z F, Zhang Q L, Shen Y T, Mao X, Wei L, Sun R J, Zhou F L, Liu C K. Flexible self-powered friction piezoelectric sensor based on structured PVDF-based composite nanofiber membranes[J]. ACS Appl. Mater. Interfaces, 2023,15(25):30849-30858. doi: 10.1021/acsami.3c05540

    43. [43]

      Li W D, Ke K, Jia J, Pu J H, Zhao X, Bao R Y, Liu Z Y, Bai L, Zhang K, Yang M B, Yang W. Recent advances in multiresponsive flexible sensors towards e-skin: A delicate design for versatile sensing[J]. Small, 2022,18(7)2103734. doi: 10.1002/smll.202103734

    44. [44]

      Ma M Y, Zhang Z, Zhao Z N, Liao Q L, Kang Z, Gao F F, Zhao X, Zhang Y. Self-powered flexible antibacterial tactile sensor based on triboelectric-piezoelectric-pyroelectric multi-effect coupling mechanism[J]. Nano Energy, 2019,66104105. doi: 10.1016/j.nanoen.2019.104105

    45. [45]

      Bajzek T J. Thermocouples: A sensor for measuring temperature[J]. IEEE Instrum. Meas. Mag., 2005,8(1):35-40. doi: 10.1109/MIM.2005.1405922

    46. [46]

      Li M, Xiong Y C, Wei H X, Yao F J, Han Y, Du Y J, Xu D Y. Flexible Te/PEDOT∶PSS thin films with high thermoelectric power factor and their application as flexible temperature sensors[J]. Nanoscale, 2023,15(26):11237-11246. doi: 10.1039/D3NR01516E

    47. [47]

      Han R H, Liu Y, Mo Y P, Xu H C, Yang Z W, Bao R R, Pan C F. High anti-jamming flexible capacitive pressure sensors based on core-shell structured AgNWs@TiO2[J]. Adv. Funct. Mater., 2023,33(51)2305531. doi: 10.1002/adfm.202305531

    48. [48]

      Shang C, Fu B, Tuo J L, Guo X Y, Li Z Z, Wang Z X, Xu L J, Guo J J. Soft biomimetic fiber-optic tactile sensors capable of discriminating temperature and pressure[J]. ACS Appl. Mater. Interfaces, 2023,15(46):53264-53272. doi: 10.1021/acsami.3c12712

    49. [49]

      Zhang P F, Wu J X, Zhao L, Guo Z Y, Tang H T, Wang Z F, Liu Z C, Chen W B, Xu X H. Environmentally stable and self-recovery flexible composite mechanical sensor based on mechanoluminescence[J]. ACS Sustainable Chem. Eng., 2023,11(10):4073-4081. doi: 10.1021/acssuschemeng.2c05955

    50. [50]

      Chen C J, Zhuang Y X, Li X Y, Lin F Y, Peng D F, Tu D, Xie A, Xie R J. Achieving remote stress and temperature dual-modal imaging by double-lanthanide-activated mechanoluminescent materials[J]. Adv. Funct. Mater., 2021,31(25)2101567. doi: 10.1002/adfm.202101567

    51. [51]

      Liu Y C, Sun L, Feng W W, Jin Z K, Wang C. A stable, self-healable, and stretchable dielectric polymer for electroluminescent device working underwater[J]. Adv. Funct. Mater., 2024,34(40)2402453. doi: 10.1002/adfm.202402453

    52. [52]

      Tsuneyasu S, Takeda N, Satoh T. Novel powder electroluminescent device enabling control of emission color by thermal response[J]. J. Soc. Inf. Disp., 2021,29(3):207-212. doi: 10.1002/jsid.967

    53. [53]

      Xie F J, Lu F, Tian Y, Zhang X, Wang Y Q, Zheng L Q, Gao X P. Thermochromic-based bimodal sensor for strain-insensitive temperature sensing and synchronous strain sensing[J]. Chem. Eng. J., 2023,471144504. doi: 10.1016/j.cej.2023.144504

    54. [54]

      Li S J, Cui X Y, Yang Y Y. Oblique pyramid microstructure-patterned flexible sensors for pressure and visual temperature sensing[J]. ACS Appl. Mater. Interfaces, 2023,15(51):59760-59767. doi: 10.1021/acsami.3c12625

    55. [55]

      Man J D, Jin Z H, Chen J M. Magnetic tactile sensor with bionic hair array for sliding sensing and object recognition[J]. Adv. Sci., 2024,11(12)2306832. doi: 10.1002/advs.202306832

    56. [56]

      Jung M Y, Kim K, Kim B, Cheong H, Shin K, Kwon O S, Park J J, Jeon S. Paper-based bimodal sensor for electronic skin applications[J]. ACS Appl. Mater. Interfaces, 2017,9(32):26974-26982. doi: 10.1021/acsami.7b05672

    57. [57]

      Zhu H D, Luo H Y, Cai M, Song J Z. A multifunctional flexible tactile sensor based on resistive effect for simultaneous sensing of pressure and temperature[J]. Adv. Sci., 2024,11(6)2307693. doi: 10.1002/advs.202307693

    58. [58]

      Chen L G, Xu Y Q, Liu Y F, Wang J, Chen J W, Chang X H, Zhu Y T. Flexible and transparent electronic skin sensor with sensing capabilities for pressure, temperature, and humidity[J]. ACS Appl. Mater. Interfaces, 2023,15(20):24923-24932. doi: 10.1021/acsami.3c03829

    59. [59]

      Wang X C, Chen G X, Zhang K L, Li R A, Jiang Z H, Zhou H Y, Gan J L, He M H. Self-healing multimodal flexible optoelectronic fiber sensors[J]. Chem. Mater., 2023,35(3):1345-1354. doi: 10.1021/acs.chemmater.2c03396

    60. [60]

      Guo H T, Chen Y M, Li Y, Zhou W, Xu W H, Pang L, Fan X M, Jiang S H. Electrospun fibrous materials and their applications for electromagnetic interference shielding: A review[J]. Compos. Pt. A- Appl. Sci. Manuf., 2021,143106309. doi: 10.1016/j.compositesa.2021.106309

    61. [61]

      Wang S, Wang X Y, Wang Q, Ma S Q, Xiao J L, Liu H T, Pan J, Zhang Z, Zhang L. Flexible optoelectronic multimodal proximity/pressure/temperature sensors with low signal interference[J]. Adv. Mater., 2023,35(49)2304701. doi: 10.1002/adma.202304701

    62. [62]

      Yang H, Wei Y, Ju H N, Huang X R, Li J, Wang W, Peng D F, Tu D, Li G G. Microstrain-stimulated elastico-mechanoluminescence with dual-mode stress sensing[J]. Adv. Mater., 2024,36(26)2401296. doi: 10.1002/adma.202401296

    63. [63]

      Zhang X, Ai J W, Zou R P, Su B. Compressible and stretchable magnetoelectric sensors based on liquid metals for highly sensitive, self-powered respiratory monitoring[J]. ACS Appl. Mater. Interfaces, 2021,13(13):15727-15737. doi: 10.1021/acsami.1c04457

    64. [64]

      Zhang L, Tong L M. A bioinspired flexible optical sensor for force and orientation sensing[J]. Opto-Electron. Adv., 2023,6(5)230051. doi: 10.29026/oea.2023.230051

    65. [65]

      Yokota T, Fukuda K, Someya T. Recent progress of flexible image sensors for biomedical applications[J]. Adv. Mater., 2021,33(19)2004416. doi: 10.1002/adma.202004416

    66. [66]

      Yan Y C, Hu Z, Yang Z B, Yuan W Z, Song C Y, Pan J, Shen Y J. Soft magnetic skin for super-resolution tactile sensing with force self-decoupling[J]. Sci. Robot., 2021,6(51)eabc8801. doi: 10.1126/scirobotics.abc8801

    67. [67]

      Zhao S, Zhu R. Electronic skin with multifunction sensors based on thermosensation[J]. Adv. Mater., 2017,29(15)1606151. doi: 10.1002/adma.201606151

    68. [68]

      Li Y X, Wang R R, Wang G E, Feng S Y, Shi W G, Cheng Y, Shi L J, Fu K Y, Sun J. Mutually noninterfering flexible pressure-temperature dual-modal sensors based on conductive metal-organic framework for electronic skin[J]. ACS Nano, 2022,16(1):473-484. doi: 10.1021/acsnano.1c07388

    69. [69]

      Wang Y, Wu H T, Xu L, Zhang H N, Yang Y, Wang Z L. Hierarchically patterned self-powered sensors for multifunctional tactile sensing[J]. Sci. Adv., 2020,6(34)eabb9083. doi: 10.1126/sciadv.abb9083

    70. [70]

      Wu J H, Fan X Q, Liu X, Ji X Y, Shi X L, Wu W B, Yue Z, Liang J J. Highly sensitive temperature-pressure bimodal aerogel with stimulus discriminability for human physiological monitoring[J]. Nano Lett., 2022,22(11):4459-4467. doi: 10.1021/acs.nanolett.2c01145

    71. [71]

      Miao P, Wang J, Zhang C C, Sun M Y, Cheng S S, Liu H. Graphene nanostructure-based tactile sensors for electronic skin applications[J]. Nanomicro Lett., 2019,11(1)71.

    72. [72]

      Han S Q, Zhou S Y, Mei L Y, Guo M L, Zhang H Y, Li Q N, Zhang S, Niu Y K, Zhuang Y, Geng W P, Bi K X, Chou X J. Nanoelectromechanical temperature sensor based on piezoresistive properties of suspended graphene film[J]. Nanomaterials, 2023,13(6)1103. doi: 10.3390/nano13061103

    73. [73]

      Afroze J D, Tong L Y, Abden M J, Chen Y. Multifunctional hierarchical graphene-carbon fiber hybrid aerogels for strain sensing and energy storage[J]. Adv. Compos. Hybrid Mater., 2022,6(1)18.

    74. [74]

      He S S, Hong Y, Liao M, Li Y C, Qiu L B, Peng H S. Flexible sensors based on assembled carbon nanotubes[J]. Aggregate, 2021,2(6)e143. doi: 10.1002/agt2.143

    75. [75]

      Sharma S, Pradhan G B, Jeong S, Zhang S P, Song H, Park J Y. Stretchable and all-directional strain-insensitive electronic glove for robotic skins and human-machine interfacing[J]. ACS Nano, 2023,17(9):8355-8366. doi: 10.1021/acsnano.2c12784

    76. [76]

      Zhang H N, Zhang Q C, Liang J, Li B, Zang J B, Cao X Y, Gao L B, Zhang Z D, Miao X Y, Xue C Y. Pressure and temperature dual- parameter sensor based on natural wood for portable health-monitoring devices[J]. ACS Sustainable Chem. Eng., 2023,11(45):16194-16204. doi: 10.1021/acssuschemeng.3c04237

    77. [77]

      Veeralingam S, Badhulika S. Bi2S3/PVDF/Ppy-based freestanding, wearable, transient nanomembrane for ultrasensitive pressure, strain, and temperature sensing[J]. ACS Appl. Bio Mater., 2021,4(1):14-23. doi: 10.1021/acsabm.0c01399

    78. [78]

      Gao X Z, Gao F L, Liu J, Li Y J, Wan P B, Yu Z Z, Li X F. Self-powered resilient porous sensors with thermoelectric poly(3, 4-ethylenedioxythiophene): poly(styrenesulfonate) and carbon nanotubes for sensitive temperature and pressure dual-mode sensing[J]. ACS Appl. Mater. Interfaces, 2022,14(38):43783-43791. doi: 10.1021/acsami.2c12892

    79. [79]

      Meng X Y, Mo L X, Han S B, Zhao J, Pan Y Q, Wang F D, Fang Y, Li L H. Pressure-temperature dual-parameter flexible sensors based on conformal printing of conducting polymer PEDOT∶PSS on microstructured substrate[J]. Adv. Mater. Interfaces, 2023,10(5)2201927. doi: 10.1002/admi.202201927

    80. [80]

      Park J, Kim M, Lee Y, Lee H S, Ko H. Fingertip skin-inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli[J]. Sci. Adv., 2015,1(9)e1500661. doi: 10.1126/sciadv.1500661

    81. [81]

      Yuan T K, Yin R L, Li C W, Wang C, Fan Z, Pan L J. Fully inkjet-printed dual-mode sensor for simultaneous pressure and temperature sensing with high decoupling[J]. Chem. Eng. J., 2023,473145475. doi: 10.1016/j.cej.2023.145475

    82. [82]

      Gao F L, Liu J, Li X P, Ma Q, Zhang T T, Yu Z Z, Shang J, Li R W, Li X F. Ti3C2Tx MXene-based multifunctional tactile sensors for precisely detecting and distinguishing temperature and pressure stimuli[J]. ACS Nano, 2023,17(16):16036-16047. doi: 10.1021/acsnano.3c04650

    83. [83]

      Bae G Y, Han J T, Lee G, Lee S, Kim S W, Park S, Kwon J, Jung S, Cho K. Pressure/temperature sensing bimodal electronic skin with stimulus discriminability and linear sensitivity[J]. Adv. Mater., 2018,30(43)1803388. doi: 10.1002/adma.201803388

    84. [84]

      An B W, Heo S, Ji S, Bien F, Park J U. Transparent and flexible fingerprint sensor array with multiplexed detection of tactile pressure and skin temperature[J]. Nat. Commun., 2018,9(1)2458. doi: 10.1038/s41467-018-04906-1

    85. [85]

      Li L T, Zhu G X, Wang J, Chen J W, Zhao G Y, Zhu Y T. A flexible and ultrasensitive interfacial iontronic multisensory sensor with an array of unique "cup-shaped" microcolumns for detecting pressure and temperature[J]. Nano Energy, 2023,105108012. doi: 10.1016/j.nanoen.2022.108012

    86. [86]

      Wang J, Cui X H, Song Y J, Chen J W, Zhu Y T. Flexible iontronic sensors with high-precision and high-sensitivity detection for pressure and temperature[J]. Compos. Commun., 2023,39101544. doi: 10.1016/j.coco.2023.101544

    87. [87]

      Mokhtar S M A, Eulate E A D, Yamada M, Prow T W, Evans D R. Conducting polymers in wearable devices[J]. Med. Devices Sens., 2021,4(1)e10160. doi: 10.1002/mds3.10160

    88. [88]

      Zhou K K, Dai K, Liu C T, Shen C Y. Flexible conductive polymer composites for smart wearable strain sensors[J]. SmartMat, 2020,1(1)e1010. doi: 10.1002/smm2.1010

    89. [89]

      Li M F, Chen J X, Zhong W B, Luo M Y, Wang W, Qing X, Lu Y, Liu Q Z, Liu K, Wang Y D, Wang D. Large-area, wearable, self-powered pressure-temperature sensor based on 3D thermoelectric spacer fabric[J]. ACS Sens., 2020,5(8):2545-2554. doi: 10.1021/acssensors.0c00870

    90. [90]

      Wang Y L, Mao H Y, Wang Y, Zhu P C, Liu C H, Deng Y. 3D geometrically structured PANI/CNT-decorated polydimethylsiloxane active pressure and temperature dual-parameter sensors for man- machine interaction applications[J]. J. Mater. Chem. A, 2020,8(30):15167-15176. doi: 10.1039/D0TA05651K

    91. [91]

      Zhu P C, Wang Y L, Wang Y, Mao H Y, Zhang Q, Deng Y. Flexible 3D architectured piezo/thermoelectric bimodal tactile sensor array for e-skin application[J]. Adv. Energy Mater., 2020,10(39)2001945. doi: 10.1002/aenm.202001945

    92. [92]

      Jin X Z, Li H, Wang Y, Yang Z Y, Qi X D, Yang J H, Wang Yong. Ultraflexible PEDOT∶PSS/helical carbon nanotubes film for all-in-one photothermoelectric conversion[J]. ACS Appl. Mater. Interfaces, 2022,14(23):27083-27095. doi: 10.1021/acsami.2c05875

    93. [93]

      Xu C, Yang S W, Li P C, Wang H, Li H, Liu Z T. Wet-spun PEDOT∶PSS/CNT composite fibers for wearable thermoelectric energy harvesting[J]. Compos. Commun., 2022,32101179. doi: 10.1016/j.coco.2022.101179

    94. [94]

      Zhang M, Cao X Y, Wen M, Chen C L, Wen Q C, Fu Q, Deng H. Highly electrical conductive PEDOT∶PSS/SWCNT flexible thermoelectric films fabricated by a high-velocity non-solvent turbulent secondary doping approach[J]. ACS Appl. Mater. Interfaces, 2023,15(8):10947-10957. doi: 10.1021/acsami.2c21025

    95. [95]

      Zhang L, Xia B J, Shi X L, Liu W D, Yang Y L, Hou X J, Ye X H, Suo G Q, Chen Z G. Achieving high thermoelectric properties in PEDOT∶PSS/SWCNTs composite films by a combination of dimethyl sulfoxide doping and NaBH4 dedoping[J]. Carbon, 2022,196:718-726. doi: 10.1016/j.carbon.2022.05.043

    96. [96]

      Jeong C, Ko H, Kim H T, Sun K, Kwon T H, Jeong H E, Park Y B. Bioinspired, high-sensitivity mechanical sensors realized with hexagonal microcolumnar arrays coated with ultrasonic-sprayed single-walled carbon nanotubes[J]. ACS Appl. Mater. Interfaces, 2020,12(16):18813-18822. doi: 10.1021/acsami.9b23370

    97. [97]

      Qiu Y, Tian Y, Sun S S, Hu J H, Wang Y Y, Zhang Z, Liu A P, Cheng H Y, Gao W Z, Zhang W A, Chai H, Wu H P. Bioinspired, multifunctional dual-mode pressure sensors as electronic skin for decoding complex loading processes and human motions[J]. Nano Energy, 2020,78105337. doi: 10.1016/j.nanoen.2020.105337

    98. [98]

      Bai N N, Wang L, Xue Y H, Wang Y, Hou X Y, Li G, Zhang Y, Cai M K, Zhao L Y, Guan F Y, Wei X Y, Guo C F. Graded interlocks for iontronic pressure sensors with high sensitivity and high linearity over a broad range[J]. ACS Nano, 2022,16(3):4338-4347. doi: 10.1021/acsnano.1c10535

    99. [99]

      Lu L S, Zhao Y H, Lin N, Xie Y X. Skin-inspired flexible pressure sensor with hierarchical interlocked spinosum microstructure by laser direct writing for high sensitivity and large linearity[J]. Sens. Actuator A-Phys., 2024,366114988. doi: 10.1016/j.sna.2023.114988

    100. [100]

      Xu Y Q, Chen L R, Chen J W, Chang X H, Zhu Y T. Flexible and transparent pressure/temperature sensors based on ionogels with bioinspired interlocked microstructures[J]. ACS Appl. Mater. Interfaces, 2022,14(1):2122-2131. doi: 10.1021/acsami.1c22428

    101. [101]

      Shin Y E, Park Y J, Ghosh S K, Lee Y, Park J, Ko H. Ultrasensitive multimodal tactile sensors with skin-inspired microstructures through localized ferroelectric polarization[J]. Adv. Sci., 2022,9(9)2105423. doi: 10.1002/advs.202105423

    102. [102]

      Han S B, Jiao F, Khan Z U, Edberg J, Fabiano S, Crispin X. Thermoelectric polymer aerogels for pressure-temperature sensing applications[J]. Adv. Funct. Mater., 2017,27(44)1703549. doi: 10.1002/adfm.201703549

    103. [103]

      Zu G Q, Kanamori K, Nakanishi K, Huang J. Superhydrophobic ultraflexible triple-network graphene/polyorganosiloxane aerogels for a high-performance multifunctional temperature/strain/pressure sensing array[J]. Chem. Mater., 2019,31(16):6276-6285. doi: 10.1021/acs.chemmater.9b02437

    104. [104]

      Hong Q, Liu T Q, Guo X H, Yan Z H, Li W, Liu L, Wang D, Hong W Q, Qian Z B, Zhang A Q, Wang Z A, Li X H, Wang D D, Mai Z H, Zhao Y N, Yan F, Xing G Z. 3D dual-mode tactile sensor with decoupled temperature and pressure sensing: Toward biological skins for wearable devices and smart robotics[J]. Sensor Actuat. B-Chem., 2024,404135255. doi: 10.1016/j.snb.2023.135255

    105. [105]

      Gao F L, Min P, Gao X Z, Li C J, Zhang T T, Yu Z Z, Li X F. Integrated temperature and pressure dual-mode sensors based on elastic PDMS foams decorated with thermoelectric PEDOT∶PSS and carbon nanotubes for human energy harvesting and electronic-skin[J]. J. Mater. Chem. A, 2022,10(35):18256-18266. doi: 10.1039/D2TA04862K

    106. [106]

      Mohammadi A V, Rosen J, Gogotsi Y. The world of two-dimensional carbides and nitrides (MXenes)[J]. Science, 2021,372(6547)eabf1581. doi: 10.1126/science.abf1581

    107. [107]

      Zhang L, Wang J, Wang S W, Wang L L, Wu M H. Neuron-inspired multifunctional conductive hydrogels for flexible wearable sensors[J]. J. Mater. Chem. C, 2022,10(11):4327-4335. doi: 10.1039/D1TC05864A

    108. [108]

      Wang M, Ma C, Uzabakiriho P C, Chen X, Chen Z R, Cheng Y, Wang Z R, Zhao G. Stencil printing of liquid metal upon electrospun nanofibers enables high-performance flexible electronics[J]. ACS Nano, 2021,15(12):19364-19376. doi: 10.1021/acsnano.1c05762

    109. [109]

      Chen C, Ying W B, Li J Y, Kong Z Y, Li F L, Hu H, Tian Y, Kim D H, Zhang R Y, Zhu J. A self-healing and ionic liquid affiliative polyurethane toward a piezo 2 protein inspired ionic skin[J]. Adv. Funct. Mater., 2022,32(4)2106341. doi: 10.1002/adfm.202106341

    110. [110]

      Song S M, Kim K Y, Lee S H, Kim K K, Lee K, Lee W, Jeon H, Ko S H. Recent advances in 1D nanomaterial-based bioelectronics for healthcare applications[J]. Adv. Nanobiomed Res., 2022,2(3)2100111. doi: 10.1002/anbr.202100111

    111. [111]

      Huynh T P, Haick H. Autonomous flexible sensors for health monitoring[J]. Adv. Mater., 2018,30(50)1802337. doi: 10.1002/adma.201802337

    112. [112]

      Sang S B, Pei Z, Zhang F, Ji C, Li Q, Ji J L, Yang K, Zhang Q. Three-dimensional printed bimodal electronic skin with high resolution and breathability for hair growth[J]. ACS Appl. Mater. Interfaces, 2022,14(27):31493-31501. doi: 10.1021/acsami.2c09311

    113. [113]

      Su Y, Ma C S, Chen J, Wu H P, Luo W X, Peng Y M, Luo Z B, Li L, Tan Y S, Omisore O M, Zhu Z F, Wang L, Li H. Printable, highly sensitive flexible temperature sensors for human body temperature monitoring: A review[J]. Nanoscale Res. Lett., 2020,15(1)200. doi: 10.1186/s11671-020-03428-4

    114. [114]

      Mervis J S, Phillips T J. Pressure ulcers: Pathophysiology, epidemiology, risk factors, and presentation[J]. J. Am. Acad. Dermatol., 2019,81(4):881-890. doi: 10.1016/j.jaad.2018.12.069

    115. [115]

      Lee Y, Park J, Choe A, Cho S, Kim J, Ko H. Mimicking human and biological skins for multifunctional skin electronics[J]. Adv. Funct. Mater., 2020,30(20)1904523. doi: 10.1002/adfm.201904523

  • 加载中
    1. [1]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    2. [2]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    3. [3]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    4. [4]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    5. [5]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    6. [6]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    7. [7]

      Nana Wang Gaosheng Zhang Huosheng Li Tangfu Xiao . Discussion on the Teaching Reform of Environmental Functional Materials within the Context of “Double First-Class” Initiative: Emphasizing the Integration of Industry, Academia, Research, and Application. University Chemistry, 2024, 39(6): 137-144. doi: 10.3866/PKU.DXHX202312010

    8. [8]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    9. [9]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    10. [10]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    11. [11]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    12. [12]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    13. [13]

      Yumiao Gao Yixin Chen Jiaxin Wei Junjie Yu Yunxia Wang . Guarding the Kingdom: Skin Allies with Sunscreen for Mutual Protection. University Chemistry, 2024, 39(9): 74-80. doi: 10.12461/PKU.DXHX202404149

    14. [14]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(11): 0-0.

    15. [15]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    16. [16]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    17. [17]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    18. [18]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    19. [19]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    20. [20]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

Metrics
  • PDF Downloads(0)
  • Abstract views(74)
  • HTML views(28)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return