Citation: Xiaofen GUAN, Yating LIU, Jia LI, Yiwen HU, Haiyuan DING, Yuanjing SHI, Zhiqiang WANG, Wenmin WANG. Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122 shu

Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand

Figures(9)

  • Two new dinuclear lanthanide(Ⅲ) complexes, namely [Ln2(dbm)2(HL)2(CH3OH)2]·4CH3OH [Ln=Tb (1) and Dy (2), Hdbm=dibenzoylmethane] have been synthesized using prepared multidentate Schiff base ligand H3L (hydroxy-acetic acid(4-diethylamino-2-hydroxy-benzylidene)-hydrazide) with good biological activity. Structure characterizations show that the complex comprises two Ln3+ ions, two dbm- ions, two HL2- ligands, two CH3OH molecules, and four free methanol molecules. Each Ln3+ ion is eight-coordinated. The two central Ln(Ⅲ) ions are bridged by two μ2-O atoms leading to a parallelogram [Ln2O2] core. The interaction between the compounds (H3L, 1, and 2) and the calf thymus DNA (CT-DNA) has been further confirmed by UV-Vis spectrometry, fluorescence titration, and cyclic voltammetry. The results showed that both 1 and 2 could undergo insertion with CT-DNA.
  • 加载中
    1. [1]

      Li W X, Situ Y Z, Ding L F, Chen Y L, Yang Q Y. MOF GRU: A MOFid aided deep learning model for predicting the gas separation performance of metal-organic frameworks[J]. ACS Appl. Mater. Interfaces, 2023,15(51):59887-59894. doi: 10.1021/acsami.3c11790

    2. [2]

      Zhang M X, Jiang J Y, Zhao H T, Wang Y, He X G, Chen M, Wang W, Wang S Y, Wang S, Wang M, Sun T M, Qin G P, Tang Y F, Cui H H. Flow channel with recognition corners in a stable La-MOF for onestep ethylene production[J]. Inorg. Chem, 2024,63(3):1507-1512. doi: 10.1021/acs.inorgchem.3c03852

    3. [3]

      El-Sewify I M, Ma S Q. Recent development of metal-organic frameworks for water purification[J]. Langmuir, 2024,40(10):5060-5076. doi: 10.1021/acs.langmuir.3c03818

    4. [4]

      Li W Y, Xu P, Wang Z W, He Y Z, Qin H, Zeng Y, Li Y C, Zhang Z Y, Gao J. MOFs meet membrane: Application in water treatment and separation[J]. Mater. Chem. Front, 2023,7(21):5140-5170. doi: 10.1039/D3QM00487B

    5. [5]

      SI Y L, SUN S Q, YANG J S, BIE Z J, CHEN Y, LUO L. Synthesis and adsorption properties of Zn (Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands[J]. Chinese J. Inorg. Chem., 2024,40(9):1755-1762. doi: 10.11862/CJIC.20240061

    6. [6]

      Seal N, Neogi S. Intrinsic-unsaturation-enriched biporous and chemorobust Cu (Ⅱ) framework for efficient catalytic CO2 fixation and pore-fitting actuated size-exclusive Hantzsch condensation with mechanistic validation[J]. ACS Appl. Mater. Interfaces, 2021,13(46):55123-55135. doi: 10.1021/acsami.1c16984

    7. [7]

      Kalhor S, Sepehrmansourie H, Zarei M, Zolfigol M A, Shi H. Application of functionalized Zn-based metal-organic frameworks (Zn-MOFs) with CuO in heterocycle synthesis via azide alkyne cycloaddition[J]. Inorg. Chem., 2024,63(11):4898-4914. doi: 10.1021/acs.inorgchem.3c03988

    8. [8]

      Syed Z H, Sha F, Zhang X, Kaphan D M, Delferro M, Farha O K. Metal-organic framework nodes as a supporting platform for tailoring the activity of metal catalysts[J]. ACS Catal., 2020,10(19):11556-11566. doi: 10.1021/acscatal.0c03056

    9. [9]

      Xiao C, Tian J D, Hong M C. Water-stable metal-organic frameworks (MOFs): Rational construction and carbon dioxide capture[J]. Chem. Sci., 2024,15:1570-1610. doi: 10.1039/D3SC06076D

    10. [10]

      MEI Z Z, WANG H Y, KANG X Q, SHAO Y L, GU J Z. Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands[J]. Chinese J. Inorg. Chem, 2024,40(9):1795-1802. doi: 10.11862/CJIC.20240081

    11. [11]

      LING W Z, CHEN X Y, LIU W J, HUANG Y K, LI Y. Syntheses, crystal structures, and catalytic properties of three zinc (Ⅱ), cobalt (Ⅱ) and nickel (Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy) nicotinic acid[J]. Chinese J. Inorg. Chem., 2024,2024(9):1803-1810. doi: 10.11862/CJIC20240068

    12. [12]

      Ariadni Z, George D, Geromichalos , Anna P, Antonios G. Hatzidimitriou, Evdoxia C A, Maria L K, Anastasia A P, George P. A palladium (Ⅱ) complex with the Schiff base 4-chloro-2-(N-ethyliminomethyl) phenol: Synthesis, structural characterization, and in vitro and in silico biological activity studies.[J]. J. Inorg. Biochem, 2019,199110792. doi: 10.1016/j.jinorgbio.2019.110792

    13. [13]

      Xing F, Xu J W, Zhou Y X, Yu P Y, Zhe M, Xiang Z, Duan X, Ritz U. Recent advances in metal-organic frameworks for stimuli-responsive drug delivery[J]. Nanoscale, 2024,16:4434-4483. doi: 10.1039/D3NR05776C

    14. [14]

      Cedrún-Morales M, Ceballos M, Polo E, Del Pino P, Pelaz B. Nanosized metalorganic frameworks as unique platforms for bioapplications[J]. Chem. Commun, 2023,59(20):2869-2887. doi: 10.1039/D2CC05851K

    15. [15]

      Wang W M, Qiao N, Xin X Y, Wu Z L, Cui J Z. Octanuclear Ln(Ⅲ)based clusters assembled by a polydentate Schiff base ligand and a β-diketone co-ligand: Efficient conversion of CO2 to cyclic carbonates and large magnetocaloric effect[J]. Cryst. Growth Des, 2022,23(1):87-95.

    16. [16]

      Wang W M, Qiao N, Xin X Y, Yang C, Chen Y, Dong S S, Zhang C X. New wheel-shaped Ln6 clusters for conversion of CO2 and magnetic properties[J]. J. Rare Earths, 2023,41(10):1574-1582. doi: 10.1016/j.jre.2022.09.012

    17. [17]

      Xiong D H, Cheng J, Ai F X, Wang X Y, Xiao J X, Zhu F, Zeng K, Wang K, Zhang Z. Insight into the sensing behavior of DNA probes based on MOF-nucleic acid interaction for bioanalysis[J]. Anal. Chem, 2023,95(12):5470-5478. doi: 10.1021/acs.analchem.3c00832

    18. [18]

      Ghosh M K, Pathak S, Ghorai T K. Synthesis of two mononuclear Schiff base metal (M=Fe, Cu) complexes: MOF structure, dye degradation, H2O2 sensing, and DNA binding property[J]. ACS Omega, 2019,4(14):16068-16079. doi: 10.1021/acsomega.9b02268

    19. [19]

      Guan X F, Zhao C Y, Zhang Y X, Wang Y W, Wang Y Y, Shi X H, Shi Y, Wang W M. Crystal structure, fluorescence, magnetic properties and DNA interaction of four novel binuclear Ln2 compounds with Schiff ligand[J]. J. Mol. Struct, 2023,1282135207. doi: 10.1016/j.molstruc.2023.135207

    20. [20]

      Yu K H, Wei T S, Li Z J, Li J Y, Wang Z Y, Dai Z H. Construction of molecular sensing and logic systems based on site-occupying effectmodulated MOF-DNA interaction[J]. J. Am. Chem. Soc, 2020,142(51):21267-21271. doi: 10.1021/jacs.0c10442

    21. [21]

      Arola-Arnal A, Benet-Buchholz J, Neidle S, Vilar R. Effects of metal coordination geometry on stabilization of human telomeric quadruplex DNA by square-planar and square-pyramidal metal complexes[J]. Inorg. Chem., 2008,47(24):11910-11919. doi: 10.1021/ic8016547

    22. [22]

      XIONG X T, XIONG Z Q, XIAO P L, NIE X L, SONG X Y, YI X G. Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na (Ⅰ)/Cd (Ⅱ) assembled by 5-bromo-2hydroxybenzoic acid ligands[J]. Chinese J. Inorg. Chem., 2024,40(9):1661-1670. doi: 10.11862/CJIC.20240145

    23. [23]

      Rosenberg B, Van Camp L, Krigas T. Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode[J]. Nature, 1965,205(4972):698-699. doi: 10.1038/205698a0

    24. [24]

      Rosenberg B, Van Camp L, Grimley E B, Thomson A J. The inhibition of growth or cell division in Escherichia coli by different ionic species of platinum (Ⅳ) complexes[J]. J. Biol. Chem, 1967,242(6):1347-1352. doi: 10.1016/S0021-9258(18)96186-7

    25. [25]

      Das K, Nandi S, Mondal S, Askun T, Cantürk Z, Celikboyun P, Massera C, Garribba E, Datta A, Sinha C, Akitsu T. Triply phenoxo bridged Eu (Ⅲ) and Sm (Ⅲ) complexes with 2, 6-diformyl-4-methylphenol-di (benzoylhydrazone): Structure, spectra and biological study in human cell lines[J]. New J. Chem, 2015,39(2):1101-1114. doi: 10.1039/C4NJ01464B

    26. [26]

      Keshavarzian E, Asadi Z, Poupon M, Dusek M, Rastegari B. Heterodinuclear Cu-Gd (3d-4f) complex with dicompartmental Schiff base ligand in biological activity: Synthesis, crystal structure, catecholase activity and DNA & BSA-binding studies[J]. J. Mol. Liq, 2022,345117785. doi: 10.1016/j.molliq.2021.117785

    27. [27]

      Pragti , Kundu B K, Upadhyay S N, Sinha N, Ganguly R, Grabchev I, Pakhira S, Mukhopadhyay S. Pyrene-based fluorescent Ru (Ⅱ)-arene complexes for significant biological applications: Catalytic potential, DNA/protein binding, two photon cell imaging and in vitro cytotoxicity[J]. Dalton Trans., 2022,51(10):3937-3953. doi: 10.1039/D1DT04093F

    28. [28]

      Côrte-Real L, Pósa V, Martins M, Colucas R, May N V, Fontrodona X, Romero I, Mendes F, Reis C P, Gaspar M M, Pessoa J C, Enyedy E A, Correia I. Cu (Ⅱ) and Zn (Ⅱ) complexes of new 8-hydroxyquinoline Schiff bases: Investigating their structure, solution speciation, and anticancer potential[J]. Chem., 2023,62(29):11466-11486.

    29. [29]

      YAN J L, WU W N, WANG Y. A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application[J]. Chinese J. Inorg. Chem., 2024,40(9):1653-1660. doi: 10.11862/CJIC.20240154

    30. [30]

      Bhattacharya P, Bag R, Satpathi S, Pati S K, Butcher R J, Tang J K, Goswami S. Structure and magnetism of Ln2(Ln=Gd, Tb, Dy, and Ho) assemblies constructed from a bis (hydrazone) compartmental ligand: Slow magnetic relaxation in the Dy2 analogue[J]. Cryst. Growth Des., 2023,23(10):7459-7471. doi: 10.1021/acs.cgd.3c00876

    31. [31]

      Mavragani N, Kitos A A, Mansikkamäki A, Murugesu M. New members of radical bridged Ln2 metallocene single molecule magnets based on the unsubstituted 1, 2, 4, 5 tetrazine ligand[J]. Chem. Front., 2023,10(1):259-266.

    32. [32]

      Shao D, Sahu P P, Tang W J, Zhang Y L, Zhou Y, Xu F X, Wei X Q, Tian Z F, Singh S K, Wang X Y. A single-ion magnet building block strategy toward Dy2 single-molecule magnets with enhanced magnetic performance[J]. Dalton Trans, 2022,51(48):18610-18621. doi: 10.1039/D2DT03046B

    33. [33]

      Guan X F, Shi P F, Xue M M, Fang Z X, Yang L R, Wang W M. Structures and magnetic properties of acyloxy O bridged Ln2 compounds: Gd2 compound displaying magnetic refrigeration property[J]. J. Mol. Struct., 2021,1233129984. doi: 10.1016/j.molstruc.2021.129984

    34. [34]

      Guan X F, Zhao H J, Hao Y J, Guo X R, Yang Z P, Zhang F Y, Wang W M. Structures, luminescence properties and single molecule magnet behavior of four dinuclear lanthanide compounds[J]. J. Mol. Struct., 2021,1245131010. doi: 10.1016/j.molstruc.2021.131010

    35. [35]

      Bols M L, Ma J, Rammal F, Plessers D, Wu X J, NavarroJaén S, Heyer A J, Sels B F, Solomon E I, Schoonheydt R A. In situ UV-VisNIR absorption spectroscopy and catalysis[J]. Chem. Rev., 2024,124(5):2352-2418. doi: 10.1021/acs.chemrev.3c00602

    36. [36]

      Liu Z C, Wang B D, Yang Z Y, Li Y, Qin D D, Li T R. Synthesis, crystal structure, DNA interaction and antioxidant activities of two novel water-soluble Cu2+ complexes derivated from 2-oxo-quinoline3-carbaldehyde Schiff-bases[J]. Eur. J. Med. Chem., 2009,44(11):4477-4484. doi: 10.1016/j.ejmech.2009.06.009

    37. [37]

      Liu Z C, Wang B D, Li B, Wang Q, Yang Z Y, Li T R, Li Y. Crystal structures, DNA binding and cytotoxic activities studies of Cu (Ⅱ) complexes with 2-oxo-quinoline-3-carbaldehyde Schiff-bases[J]. Eur. J. Med. Chem., 2010,45(11):5353-5361. doi: 10.1016/j.ejmech.2010.08.060

    38. [38]

      Taha Z A, Ajlouni A M, Al-Hassan K A, Hijazi A K, Faiq A B. Syntheses, characterization, biological activity and fluorescence properties of bis-(salicylaldehyde)-1, 3-propylenediimine Schiff base ligand and its lanthanide complexes[J]. Spectroc. Acta Pt. A-Molec. Biomolec., 2011,81(1):317-323. doi: 10.1016/j.saa.2011.06.018

    39. [39]

      Srinivasan S, Annaraj J, Athappan P R. Spectral and redox studies on mixed ligand complexes of cobalt (Ⅲ) phenanthroline/bipyridyl and benzoylhydrazones, their DNA binding and antimicrobial activity[J]. J. Inorg. Biochem, 2005,99(3):876-882. doi: 10.1016/j.jinorgbio.2005.01.002

    40. [40]

      Leone A M, Tibodeau J D, Bull S H, Feldberg S W, Thorp H H, Murray R W. Ion atmosphere relaxation and percolative electron transfer in Co bipyridine DNA molten salts[J]. J. Am. Chem. Soc, 2003,125(22):6784-6790. doi: 10.1021/ja0348795

  • 加载中
    1. [1]

      Long TANGYaxin BIANLuyuan CHENXiangyang HOUXiao WANGJijiang WANG . Syntheses, structures, and properties of three coordination polymers based on 5-ethylpyridine-2,3-dicarboxylic acid and N-containing ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1975-1985. doi: 10.11862/CJIC.20240180

    2. [2]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    3. [3]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    4. [4]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    5. [5]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    6. [6]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    7. [7]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    8. [8]

      Chang LiuTao WuLijiao DengXuzi LiXin FuShuzhen LiaoWenjie MaGuoqiang ZouHai Yang . Programmed DNA walkers for biosensors. Chinese Chemical Letters, 2024, 35(9): 109307-. doi: 10.1016/j.cclet.2023.109307

    9. [9]

      Yadan SUNXinfeng LIQiang LIUOshio HirokiYinshan MENG . Structures and magnetism of dinuclear Co complexes based on imine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2212-2220. doi: 10.11862/CJIC.20240131

    10. [10]

      Dong-Sheng DengSu-Qin TangYong-Tu YuanDing-Xiong XieZhi-Yuan ZhuYue-Mei HuangYun-Lin Liu . C-F insertion reaction sheds new light on the construction of fluorinated compounds. Chinese Chemical Letters, 2024, 35(8): 109417-. doi: 10.1016/j.cclet.2023.109417

    11. [11]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    12. [12]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    13. [13]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    14. [14]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    15. [15]

      Yang QinJiangtian LiXuehao ZhangKaixuan WanHeao ZhangFeiyang HuangLimei WangHongxun WangLongjie LiXianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826

    16. [16]

      Xiaohong WenMei YangLie LiMingmin HuangWei CuiSuping LiHaiyan ChenChen LiQiuping Guo . Enzymatically controlled DNA tetrahedron nanoprobes for specific imaging of ATP in tumor. Chinese Chemical Letters, 2024, 35(8): 109291-. doi: 10.1016/j.cclet.2023.109291

    17. [17]

      Jingwen ZhaoJianpu TangZhen CuiLimin LiuDayong YangChi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303

    18. [18]

      Zhongyu WangLijun WangHuaixin Zhao . DNA-based nanosystems to generate reactive oxygen species for nanomedicine. Chinese Chemical Letters, 2024, 35(11): 109637-. doi: 10.1016/j.cclet.2024.109637

    19. [19]

      Jiangshan XuWeifei ZhangZhengwen CaiYong LiLong BaiShaojingya GaoQiang SunYunfeng Lin . Tetrahedron DNA nanostructure/iron-based nanomaterials for combined tumor therapy. Chinese Chemical Letters, 2024, 35(11): 109620-. doi: 10.1016/j.cclet.2024.109620

    20. [20]

      Tian FengYun-Ling GaoDi HuKe-Yu YuanShu-Yi GuYao-Hua GuSi-Yu YuJun XiongYu-Qi FengJie WangBi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259

Metrics
  • PDF Downloads(0)
  • Abstract views(28)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return