Citation: Qiuyang LUO, Xiaoning TANG, Shu XIA, Junnan LIU, Xingfu YANG, Jie LEI. Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110 shu

Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes

  • Corresponding author: Xiaoning TANG, xntang@gzu.edu.cn
  • Received Date: 3 April 2024
    Revised Date: 30 May 2024

Figures(6)

  • Herein, a dense and hydrophobic Cu metal protective layer was constructed in-situ on the Zn electrode (Cu@Zn) through a displacement reaction in an organic solvent. Specifically, CuI powder was dissolved in N-methyl-2-pyrrolidone (NMP) and stirred for 12 h to obtain a uniform solution. Subsequently, the bare Zn was immersed in the solution at 80 ℃ for 6 h, and then washed with absolute ethanol three times to achieve the Cu@Zn electrode. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses confirm a dense Cu protective layer on the surface of the Cu@Zn electrode. Additionally, the better hydrophobicity of the Cu@Zn electrode was demonstrated through contact angle measurements with a 2 mol·L-1 ZnSO4 electrolyte. The dense and hydrophobic Cu metal protective layer can effectively isolate the direct contact between the Zn electrode and electrolyte, suppressing side reactions such as hydrogen evolution and corrosion at the electrode/electrolyte interface. Furthermore, the Cu layer possesses zincophilicity, reduced interfacial resistance, and a lower nucleation energy barrier, thereby promoting uniform Zn deposition and effectively inhibiting dendritic growth. As a result, Cu@Zn symmetric cells exhibited continuous stable performance for 1 700 and 1 330 h at 1 mA·cm-2, 1 mAh·cm-2 and 3 mA·cm-2, 1 mAh·cm-2, respectively, which were higher than those of bare Zn symmetric cells (204 and 120 h). Furthermore, the Cu@Zn||MnO2 full cell delivered a specific capacity of 168.5 mAh·g-1 at 1 A·g-1 respectively, maintaining stability for over 2 000 cycles.
  • 加载中
    1. [1]

      Li C, Jin S, Archer L A, Nazar L F. Toward practical aqueous zinc-ion batteries for electrochemical energy storage[J]. Joule, 2022,6(8):1733-1738. doi: 10.1016/j.joule.2022.06.002

    2. [2]

      Han D L, Cui C J, Zhang K Y, Wang Z X, Gao J C, Guo Y, Zhang Z C, Wu S C, Yin L C, Weng Z, Kang F Y, Yang Q H. A non-flammable hydrous organic electrolyte for sustainable zinc batteries[J]. Nat. Sustain., 2021,5(3)205. doi: 10.1038/s41893-021-00800-9

    3. [3]

      Li Q, Chen A, Wang D H, Pe Z X, Zhi C Y. "Soft shorts" hidden in zinc metal anode research[J]. Joule, 2022,6(2):273-279. doi: 10.1016/j.joule.2021.12.009

    4. [4]

      Han D L, Wang Z X, Lu H T, Li H, Cui C J, Zhang Z C, Sun R, Geng C N, Liang Q H, Guo X X, Mo Y B, Zhi X, Kang F Y, Weng Z, Yang Q H. A self-regulated interface toward highly reversible aqueous zinc batteries[J]. Adv. Energy Mater., 2022,12(9)2102982. doi: 10.1002/aenm.202102982

    5. [5]

      JI H M, XIE C L, ZHANG Q, LI Y X, LI H H, WANG H Y. Anode current collector for aqueous zinc-ion batteries: Issues and design strategies[J]. Acta Chim. Sin., 2023,81(1):29-41.  

    6. [6]

      HAN D, MA T, SUN T J, ZHANG W J, TAO Z L. Zinc anode protection strategy for aqueous zinc-ion batteries[J]. Chinese J. Inorg. Chem., 2022,38(2):185-197. doi: 10.11862/CJIC.2022.031

    7. [7]

      Liu M Y, Yuan W T, Ma G Q, Qiu K Y, Nie X Y, Liu Y C, Shen S G, Zhang N. In-situ integration of a hydrophobic and fast-Zn2+-conductive inorganic interphase to stabilize Zn metal anodes[J]. Angew. Chem. Int. Ed., 2023,62(27)e202304444. doi: 10.1002/anie.202304444

    8. [8]

      Yan H B, Li S M, Nan Y, Yang S B, Li B. Ultrafast zinc-ion-conductor interface toward high-rate and stable zinc metal batteries[J]. Adv. Energy Mater., 2021,11(8)2100186.

    9. [9]

      Xia S, Luo Q Y, Liu J N, Yang X F, Lei J, Shao J J, Tang X N. In situ spontaneous construction of zinc phosphate coating layer toward highly reversible zinc metal anodes[J]. Small, 2024e2310497. doi: 10.1002/smll.202310497

    10. [10]

      LI S H, LI M L, CHI X W, YIN X, LUO Z D, YU J H. High-stable aqueous zinc metal anodes enabled by an oriented ZnQ zeolite protective layer with facile ion migration kinetics[J]. Acta Phys.-Chim. Sin., 2024,402309003.

    11. [11]

      Li J J, Liu Z X, Han S H, Zhou P, Lu B A, Zhou J D, Zeng Z Y, Chen Z Z, Zhou J. Hetero nucleus growth stabilizing zinc anode for high-biosecurity zinc-ion batteries[J]. Nano-Micro Lett., 2023,15(1)237. doi: 10.1007/s40820-023-01206-2

    12. [12]

      Chang N N, Li T Y, Li R, Wang S N, Yin Y B, Zhang H B, Li X F. An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices[J]. Energy Environ. Sci., 2020,13(10):3527-3535. doi: 10.1039/D0EE01538E

    13. [13]

      Liu Y, An Y K, Wu L, Sun J G, Xiong F Y, Tang H, Chen S L, Guo Y, Zhang L, An Q Y, Mai L Q. Interfacial chemistry modulation via amphoteric glycine for a highly reversible zinc anode[J]. ACS Nano, 2022,17(1):552-560.

    14. [14]

      Li X, Chen Z J, Ruan P C, Hu X T, Lu B G, Yuan X M, Tian S Y, Zhou J. Inducing preferential growth of the Zn (002) plane by using a multifunctional chelator for achieving highly reversible Zn anodes[J]. Nanoscale, 2024,16(6):2923-2930. doi: 10.1039/D3NR05699F

    15. [15]

      Li Y, Peng X Y, Li X, Duan H, Xie S Y, Dong L B, Kang F Y. Functional ultrathin separators proactively stabilizing zinc anodes for zincbased energy storage[J]. Adv. Mater., 2023,35(18)2300019. doi: 10.1002/adma.202300019

    16. [16]

      Zheng Z Y, Guo S J, Yan M Y, Luo Y Z, Cao F F. A functional janus Ag nanowires/bacterial cellulose separator for high-performance dendrite-free zinc anode under harsh conditions[J]. Adv. Mater., 2023,35(47)2304667. doi: 10.1002/adma.202304667

    17. [17]

      Tian H J, Feng G X, Wang Q, Li Z, Zhang W, Lucero M, Feng Z X, Wang Z, Zhang Y, Zhen C, Gu M, Shan X N, Yang Y. Three-dimensional Zn-based alloys for dendrite-free aqueous Zn battery in dualcation electrolytes[J]. Nat. Commun., 2022,13(1)7922. doi: 10.1038/s41467-022-35618-2

    18. [18]

      SONG R, ZHAO M Q, WANG S, LU Y, BAO X B, LUO Q M, GOU L, FAN X Y, LI D L. Three-dimensional porous structure and zincophile gradient enabling dendrite free zinc anode[J]. Acta Chim. Sinica, 2024,82(4):426-434.  

    19. [19]

      Hieu L T, So S, Kim I T, Hur J. Zn anode with flexible β-PVDF coating for aqueous Zn-ion batteries with long cycle life[J]. Chem. Eng. J., 2021,411128584. doi: 10.1016/j.cej.2021.128584

    20. [20]

      Chen P, Yuan X H, Xia Y B, Zhang Y, Fu L J, Liu L L, Yu N F, Huang Q H, Wang B, Hu X W, Wu Y P, van Ree T. An artificial polyacrylonitrile coating layer confining zinc dendrite growth for highly reversible aqueous zinc-based batteries[J]. Adv. Sci., 2021,8(11)2100309. doi: 10.1002/advs.202100309

    21. [21]

      Hao J N, Li X L, Zhang S L, Yang F F, Zeng X H, Zhang S, Bo G Y, Wang C S, Guo Z P. Designing dendrite-free zinc anodes for advanced aqueous zinc batteries[J]. Adv. Funct. Mater., 2020,30(30)2001263. doi: 10.1002/adfm.202001263

    22. [22]

      Duan J W, Dong J M, Cao R R, Yang H, Fang K K, Liu Y, Shen Z T, Li F M, Liu R, Li H L, Chen C. Regulated Zn plating and stripping by a multifunctional polymer-alloy interphase layer for stable Zn metal anode[J]. Adv. Sci., 2023,10(29)2303343. doi: 10.1002/advs.202303343

    23. [23]

      Chen J Y, Qiao X, Han X R, Zhang J H, Wu H B, He Q, Chen Z B, Shi L, Wang Y Z, Xie Y N, Ma Y W, Zhao J. Releasing plating-induced stress for highly reversible aqueous Zn metal anodes[J]. Nano Energy, 2022,103107814. doi: 10.1016/j.nanoen.2022.107814

    24. [24]

      Kang L T, Cui M W, Jiang F Y, Gao Y F, Luo H J, Liu J J, Liang W, Zhi C Y. Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries[J]. Adv. Funct. Mater., 2018,8(25)1801090.  

    25. [25]

      Li B, Xue J, Lv X, Zhang R C, Ma K X, Wu X W, Dai L, Wang L, He Z X. A facile coating strategy for high stability aqueous zinc ion batteries: Porous rutile nano-TiO2 coating on zinc anode[J]. Surf. Coat. Tech., 2021,421127367. doi: 10.1016/j.surfcoat.2021.127367

    26. [26]

      Yang Y, Liu C Y, Lv Z H, Yang H, Zhang Y F, Ye M H, Chen L B, Zhao J B, Li C C. Synergistic manipulation of Zn2+ ion flux and desolvation effect enabled by anodic growth of a 3D ZnF2 matrix for long-lifespan and dendrite-free Zn metal anodes[J]. Adv. Mater., 2021,33(11)2007388. doi: 10.1002/adma.202007388

    27. [27]

      Chen A S, Zhao C Y, Gao J Z, Guo Z K, Lu X Y, Zhang J C, Liu Z P, Wang M, Liu N N, Fan L S, Zhang Y, Zhang N Q. Multifunctional SEI-like structure coating stabilizing Zn anodes at a large current and capacity[J]. Energy Environ. Sci., 2023,16(1):275-284. doi: 10.1039/D2EE02931F

    28. [28]

      Liu C C, Lu Q Q, Omar A, Mikhailova D. A facile chemical method enabling uniform Zn deposition for improved aqueous Zn-ion batteries[J]. Nanomaterials, 2021,11(3)764. doi: 10.3390/nano11030764

    29. [29]

      Cai Z, Ou Y T, Wang J D, Xiao R, Fu L, Yuan Z, Zhan R M, Sun Y M. Chemically resistant Cu-Zn/Zn composite anode for long cycling aqueous batteries[J]. Energy Storage Mater., 2020,27:205-211. doi: 10.1016/j.ensm.2020.01.032

    30. [30]

      Wang Y Y, Chen Y J, Liu W, Ni X Y, Qing P, Zhao Q W, Wei W F, Ji X B, Ma J M, Chen L B. Uniform and dendrite-free zinc deposition enabled by in situ formed AgZn3 for the zinc metal anode[J]. J. Mater. Chem. A, 2021,9(13):8452-8461. doi: 10.1039/D0TA12177K

    31. [31]

      Han D L, Wu S C, Zhang S W, Deng Y Q, Cui C J, Zhang L A, Long Y, Li H, Tao Y, Weng Z, Yang Q H, Kang F Y. A corrosion-resistant and dendrite-free zinc metal anode in aqueous systems[J]. Small, 2020,16(29)2001736. doi: 10.1002/smll.202001736

    32. [32]

      Ren Q Q, Tang X Y, Zhao X C, Wang Y, Li C H, Wang S, Yuan Y F. A zincophilic interface coating for the suppression of dendrite growth in zinc anodes[J]. Nano Energy, 2023,109108306. doi: 10.1016/j.nanoen.2023.108306

    33. [33]

      Wang M M, Wang W P, Meng Y H, Xu Y, Sun J F, Yuan Y, Chuai M, Chen N, Zheng X H, Luo R, Xu K, Chen W. Crystal facet correlated Zn growth on Cu for aqueous Zn metal batteries[J]. Energy Storage Mater., 2023,56424. doi: 10.1016/j.ensm.2023.01.026

    34. [34]

      Zhu Y P, Cui Y, Alshareef H N. An anode-free Zn-MnO2 battery[J]. Nano Lett., 2021,21(3):1446-1453. doi: 10.1021/acs.nanolett.0c04519

    35. [35]

      Zhang Q, Luan J Y. Fu L, Wu S G, Tang Y G, Ji X B, Wang H Y[J]. Chem. Int. Ed., 2019,58(44):15841-15847. doi: 10.1002/anie.201907830

    36. [36]

      Zhang Y, Yang S C, Deng J, Chen N X, Xie S D, Zhou J J, Wang Z H. Rational design of zincophilic Ag/permselective PEDOT: PSS heterogeneous interfaces for high-rate zinc electrodeposition[J]. Small, 2023,19(49)2303665. doi: 10.1002/smll.202303665

    37. [37]

      Li C P, Shi X D, Liang S Q, Ma X M, Han M M, Wu X W, Zhou J. Spatially homogeneous copper foam as surface dendrite-free host for zinc metal anode[J]. Chem. Eng. J., 2020,379122248. doi: 10.1016/j.cej.2019.122248

    38. [38]

      Xie S Y, Li Y, Li X, Zhou Y J, Dang Z Q, Rong J H, Dong L B. Stable zinc anodes enabled by zincophilic Cu nanowire networks[J]. Nano-Micro. Lett., 2021,14(1)39.

    39. [39]

      Li G P, Wang X L, Lv S H, Wang J, Yu W S, Dong X T, Liu D T. In situ constructing a film-coated 3D porous Zn anode by iodine etching strategy toward horizontally arranged dendrite-free Zn deposition[J]. Adv. Funct. Mater., 2022,33(4)2208288.

    40. [40]

      Miao Z Y, Du M, Li H Z, Zhang F, Jiang H C, Sang Y H, Li Q F, Liu H, Wang S H. Constructing nano-channeled tin layer on metal zinc for high-performance zinc-ion batteries anode[J]. EcoMat, 2021,3(4).

    41. [41]

      Han L S, Guo Y M, Ning F H, Liu X Y, Yi J, Luo Q, Qu B H, Yue J L, Lu Y F, Li Q. Lotus effect inspired hydrophobic strategy for stable Zn metal anodes[J]. Adv. Mater., 2023,46(11)2308086.

    42. [42]

      QIN D D, DING J Y, LIANG C, LIU Q, FENG L G, LUO Y, HU G Z, LUO J, LIU X J. Addressing challenges and enhancing performance of manganese-based cathode materials in aqueous zinc-ion batteries[J]. Acta Phys.-Chim. Sin., 2024,402310034. doi: 10.3866/PKU.WHXB202310034

    43. [43]

      CHEN X H, RUAN P F, WU X W, LIANG S Q, ZHOU J. Crystal structures, reaction mechanisms, and optimization strategies of MnO 2 cathode for aqueous rechargeable zinc batteries[J]. Acta Phys.-Chim. Sin., 2022,38(11)2111003.  

  • 加载中
    1. [1]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    2. [2]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    3. [3]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    4. [4]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    5. [5]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    6. [6]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    7. [7]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    8. [8]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    9. [9]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    10. [10]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    11. [11]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    12. [12]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    13. [13]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    14. [14]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    15. [15]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    16. [16]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    17. [17]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    18. [18]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    19. [19]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    20. [20]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

Metrics
  • PDF Downloads(0)
  • Abstract views(183)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return