Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors
- Corresponding author: Tingting ZHENG, ttz10_10@163.com Xiuyun ZHANG, zhangxiuyunsh@163.com Wei LÜ, lvwei_sdutcm@163.com
Citation: Jiahui CHEN, Tingting ZHENG, Xiuyun ZHANG, Wei LÜ. Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106
ZHENG Z L, QU B T, YANG X R, LIU L, ZHANG R P. Tumor-targeted Pt-Cu nanoplatform for photo-thermal therapy guided by the second near-infrared window photoacoustic imaging[J]. Chinese J. Inorg. Chem., 2021,37(11):1991-2001.
Shanmugam V, Selvakumar S, Yeh C S. Near-infrared light-responsive nanomaterials in cancer therapeutics[J]. Chem. Soc. Rev., 2014,43(17):6254-6287. doi: 10.1039/C4CS00011K
Gai S L, Yang G X, Yang P P, He F, Lin J, Jin D Y, Xing B G. Recent advances in functional nanomaterials for light-triggered cancer therapy[J]. Nano Today, 2018,19:146-187. doi: 10.1016/j.nantod.2018.02.010
Bao Z H, Liu X R, Liu Y D, Liu H Z, Zhao K. Near-infrared light-responsive inorganic nanomaterials for photothermal therapy[J]. Asian J. Pharm. Sci., 2016,11(3):349-364. doi: 10.1016/j.ajps.2015.11.123
Li S H, Yang W, Liu Y, Song X R, Liu R, Chen G L, Lu C H, Yang H H. Engineering of tungsten carbide nanoparticles for imaging-guided simile 1 064 nm laser-activated dual-type photodynamic and photothermal therapy of cancer[J]. Nano Res., 2018,11(9):4859-4873. doi: 10.1007/s12274-018-2075-z
Guo Y X, Li Y, Zhang W L, Zu H R, Yu H H, Li D L, Xiong H L, Hormel T T, Hu C F, Guo Z Y, Liu Z M. Insights into the deep-tissue photothermal therapy in near-infrared Ⅱ region based on tumor-targeted MoO2 nanoaggregates[J]. Sci. China-Mater., 2020,63(6):1085-1098. doi: 10.1007/s40843-019-1272-0
Zhang Z J, Wang J, Chen C Y. Near-infrared light-mediated nanoplatforms for cancer thermo-chemotherapy and optical imaging[J]. Adv. Mater., 2013,25(28):3869-3880. doi: 10.1002/adma.201301890
Wang Y F, Meng H M, Li Z H. Near-infrared inorganic nanomaterial-based nanosystems for photothermal therapy[J]. Nanoscale, 2021,13(19):8751-8772. doi: 10.1039/D1NR00323B
Amendola V, Pilot R, Frasconi M, Maragò O M, Iatì M A. Surface plasmon resonance in gold nanoparticles: A review[J]. J. Phys.-Condes. Matter, 2017,29(20)203002. doi: 10.1088/1361-648X/aa60f3
Tee S Y, Ye E, Teng C P, Tanaka Y, Tang K Y, Win K Y, Han M Y. Advances in photothermal nanomaterials for biomedical, environmental and energy applications[J]. Nanoscale, 2021,13(34):14268-14286. doi: 10.1039/D1NR04197E
Gao M M, Zhu L L, Peh C K, Ho G W. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production[J]. Energy Environ. Sci., 2019,12(3):841-864. doi: 10.1039/C8EE01146J
Younis M R, He G, Qu J L, Lin J, Huang P, Xia X H. Inorganic nanomaterials with intrinsic singlet oxygen generation for photodynamic therapy[J]. Adv. Sci., 2021,8(21)e2102587. doi: 10.1002/advs.202102587
Debele T A, Peng S, Tsai H C. Drug carrier for photodynamic cancer therapy[J]. Int. J. Mol. Sci., 2015,16(9):22094-22136. doi: 10.3390/ijms160922094
Hong E J, Choi D G, Shim M S. Targeted and effective photodynamic therapy for cancer using functionalized nanomaterials[J]. Acta Pharm. Sin. B, 2016,6(4):297-307. doi: 10.1016/j.apsb.2016.01.007
Kessel D, Reiners J J. Photodynamic therapy: Autophagy and mitophagy, apoptosis and paraptosis[J]. Autophagy, 2020,16(11):2098-2101. doi: 10.1080/15548627.2020.1783823
Wang Y Y, Liu Y C, Sun H W, Guo D S. Type Ⅰ photodynamic therapy by organic-inorganic hybrid materials: From strategies to applications[J]. Coord. Chem. Rev., 2019,395:46-62. doi: 10.1016/j.ccr.2019.05.016
Jia J, Liu G Y, Xu W J, Tian X L, Li S B, Han F, Feng Y H, Dong X C, Chen H Y. Fine-tuning the homometallic interface of Au-on-Au nanorods and their photothermal therapy in the NIR-Ⅱ window[J]. Angew. Chem. Int. Ed., 2020,59(34):14443-14448. doi: 10.1002/anie.202000474
Wang M Q, Liang Y, Zhang Z C, Ren G H, Liu Y J, Wu S S, Shen J. Ag@Fe3O4@C nanoparticles for multi-modal imaging-guided chemo-photothermal synergistic targeting for cancer therapy[J]. Anal. Chim. Acta, 2019,1086:122-132. doi: 10.1016/j.aca.2019.08.035
Li S S, Gu K, Wang H, Xu B L, Li H W, Shi X H, Huang Z J, Liu H Y. Degradable holey palladium nanosheets with highly active 1D nanoholes for synergetic phototherapy of hypoxic tumors[J]. J. Am. Chem. Soc., 2020,142(12):5649-5656. doi: 10.1021/jacs.9b12929
Tian B, Wang C, Zhang S, Feng L Z, Liu Z. Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide[J]. ACS Nano, 2011,5(9):7000-7009. doi: 10.1021/nn201560b
Hu Z, Zhao F, Wang Y F, Huang Y D, Chen L, Li N, Li J, Li Z H, Yi G X. Facile fabrication of a C60-polydopamine-graphene nanohybrid for single light induced photothermal and photodynamic therapy[J]. Chem. Commun., 2014,50(74):10815-10818. doi: 10.1039/C4CC04416A
Feng L L, He F, Yang G X, Gai S L, Dai Y L, Li C X, Yang P P. NIR-driven graphitic-phase carbon nitride nanosheets for efficient bioimaging and photodynamic therapy[J]. J. Mater. Chem. B, 2016,4(48):8000-8008. doi: 10.1039/C6TB02232D
Lin H, Wang X G, Yu L D, Chen Y, Shi J L. Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion[J]. Nano Lett., 2017,17(1):384-391. doi: 10.1021/acs.nanolett.6b04339
Dong Y S, Dong S M, Wang Z, Feng L L, Sun Q Q, Chen G Y, He F, Liu S K, Li W T, Yang P P. Multimode imaging-guided photothermal/chemodynamic synergistic therapy nanoagent with a tumor microenvironment responded effect[J]. ACS Appl. Mater. Interfaces, 2020,12(47):52479-52491. doi: 10.1021/acsami.0c17923
Wang F, Song C Q, Guo W, Ding D D, Zhang Q, Gao Y, Yan M, Guo C S, Liu S Q. Urchin-like tungsten suboxide for photoacoustic imaging-guided photothermal and photodynamic cancer combination therapy[J]. New J. Chem., 2017,41(23):14179-14187. doi: 10.1039/C7NJ03078A
Wang S H, Riedinger A, Li H B, Fu C H, Liu H Y, Li L L, Liu T L, Tan L F, Barthel M J, Pugliese G, De Donato F, D'Abbusco M S, Meng X W, Manna L, Meng H, Pellegrino T. Plasmonic copper sulfide nanocrystals exhibiting near-infrared photothermal and photodynamic therapeutic effects[J]. ACS Nano, 2015,9(2):1788-1800. doi: 10.1021/nn506687t
Jiang F, Ding B B, Liang S, Zhao Y J, Cheng Z Y, Xing B G, Ma P A, Lin J. Intelligent MoS2-CuO heterostructures with multiplexed imaging and remarkably enhanced antitumor efficacy via synergetic photothermal therapy/chemodynamic therapy/immunotherapy[J]. Biomaterials, 2021,268120545. doi: 10.1016/j.biomaterials.2020.120545
Lv R C, Yang D, Yang P P, Xu J T, He F, Gai S L, Li C X, Dai Y L, Yang G X, Lin J. Integration of upconversion nanoparticles and ultrathin black phosphorus for efficient photodynamic theranostics under 808 nm near-infrared light irradiation[J]. Chem. Mat., 2016,28(13):4724-4734. doi: 10.1021/acs.chemmater.6b01720
Wei F M, Karges J, Shen J C, Xie L A, Xiong K, Zhang X T, Ji L N, Chao H. A mitochondria-localized oxygen self-sufficient two-photon nano-photosensitizer for ferroptosis-boosted photodynamic therapy under hypoxia[J]. Nano Today, 2022,44101509. doi: 10.1016/j.nantod.2022.101509
Menon J U, Jadeja P, Tambe P, Vu K, Yuan B H, Nguyen K T. Nanomaterials for photo-based diagnostic and therapeutic applications[J]. Theranostics, 2013,3(3):152-166. doi: 10.7150/thno.5327
Porret E, Le Guével X, Coll J L. Gold nanoclusters for biomedical applications: toward in vivo studies[J]. J. Mater. Chem. B, 2020,8(11):2216-2232. doi: 10.1039/C9TB02767J
Park S, Lee W J, Park S, Choi D, Kim S, Park N. Reversibly pH-responsive gold nanoparticles and their applications for photothermal cancer therapy[J]. Sci. Rep., 2019,9(1)20180. doi: 10.1038/s41598-019-56754-8
Park J E, Kim M, Hwang J H, Nam J M. Golden opportunities: Plasmonic gold nanostructures for biomedical applications based on the second near-infrared window[J]. Small Methods, 2017,1(3)1600032. doi: 10.1002/smtd.201600032
Liu H Y, Chen D, Li L L, Liu T L, Tan L F, Wu X L, Tang F Q. Multifunctional gold nanoshells on silica nanorattles: A platform for the combination of photothermal therapy and chemotherapy with low systemic toxicity[J]. Angew. Chem. Int. Ed., 2011,50(4):891-895. doi: 10.1002/anie.201002820
Yang S, You Q, Yang L F, Li P S, Lu Q L, Wang S Y, Tan F P, Ji Y H, Li N. Rodlike MSN@Au nanohybrid-modified supermolecular photosensitizer for NIRF/MSOT/CT/MR quadmodal imaging-guided photothermal/photodynamic cancer therapy[J]. ACS Appl. Mater. Interfaces, 2019,11(7):6777-6788. doi: 10.1021/acsami.8b19565
Zhao P, Liu S W, Wang L, Liu G J, Cheng Y R, Lin M, Sui K Y, Zhang H. Alginate mediated functional aggregation of gold nanoclusters for systemic photothermal therapy and efficient renal clearance[J]. Carbohydr. Polym., 2020,241116344. doi: 10.1016/j.carbpol.2020.116344
Wang S J, Huang P, Nie L M, Xing R J, Liu D B, Wang Z, Lin J, Chen S H, Niu G, Lu G M, Chen X Y. Single continuous wave laser induced photodynamic/plasmonic photothermal therapy using photosensitizer-functionalized gold nanostars[J]. Adv. Mater., 2013,25(22):3055-3061. doi: 10.1002/adma.201204623
Lin J, Wang S J, Huang P, Wang Z, Chen S H, Niu G, Li W W, He J, Cui D X, Lu G M, Chen X Y, Nie Z H. Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy[J]. ACS Nano, 2013,7(6):5320-5329. doi: 10.1021/nn4011686
Kim H, Chung K, Lee S, Kim D H, Lee H. Near-infrared light-responsive nanomaterials for cancer theranostics[J]. Wiley Interdiscip. Rev.-Nanomed. Nanobiotechnol., 2016,8(1):23-45. doi: 10.1002/wnan.1347
Morales-Dalmau J, Vilches C, de Miguel I, Sanz V, Quidant R. Optimum morphology of gold nanorods for light-induced hyperthermia[J]. Nanoscale, 2018,10(5):2632-2638. doi: 10.1039/C7NR06825E
Yang D P, Liu X, Teng C P, Owh C, Win K Y, Lin M, Loh X J, Wu Y L, Li Z B, Ye E Y. Unexpected formation of gold nanoflowers by a green synthesis method as agents for a safe and effective photothermal therapy[J]. Nanoscale, 2017,9(41):15753-15759. doi: 10.1039/C7NR06286A
Espinosa A, Curcio A, Cabana S, Radtke G, Bugnet M, Kolosnjaj-Tabi J, Pechoux C, Alvarez-Lorenzo C, Botton G A, Silva A K A, Abou-Hassan A, Wilhelm C. Intracellular biodegradation of Ag nanoparticles, storage in ferritin, and protection by a Au shell for enhanced photothermal therapy[J]. ACS Nano, 2018,12(7):6523-6535. doi: 10.1021/acsnano.8b00482
Song M L, Liu N, He L, Liu G, Ling D S, Su X H, Sun X L. Porous hollow palladium nanoplatform for imaging-guided trimodal chemo-, photothermal-, and radiotherapy[J]. Nano Res., 2018,11(5):2796-2808. doi: 10.1007/s12274-017-1910-y
Huang X Q, Tang S H, Mu X L, Dai Y, Chen G X, Zhou Z Y, Ruan F X, Yang Z L, Zheng N F. Freestanding palladium nanosheets with plasmonic and catalytic properties[J]. Nat. Nanotechnol., 2011,6(1):28-32. doi: 10.1038/nnano.2010.235
Yu J, Liu S, Wang Y P, He X D, Zhang Q F, Qi Y X, Zhou D F, Xie Z G, Li X Y, Huang Y B. Synergistic enhancement of immunological responses triggered by hyperthermia sensitive Pt NPs via NIR laser to inhibit cancer relapse and metastasis[J]. Bioact. Mater., 2022,7:389-400.
Li L, Liu H, Bian J X, Zhang X Y, Fu Y H, Li Z, Wei S P, Xu Z C, Liu X K, Liu Z W, Wang D S, Gao D W. Ag/Pd bimetal nanozyme with enhanced catalytic and photothermal effects for ROS/hyperthermia/chemotherapy triple -modality antitumor therapy[J]. Chem. Eng. J., 2020,397125438. doi: 10.1016/j.cej.2020.125438
Zhang M, Wang W T, Cui Y J, Chu X H, Sun B H, Zhou N L, Shen J. Magnetofluorescent Fe3O4/carbon quantum dots coated single-walled carbon nanotubes as dual-modal targeted imaging and chemo/photodynamic/photothermal triple-modal therapeutic agents[J]. Chem. Eng. J., 2018,338:526-538. doi: 10.1016/j.cej.2018.01.081
Robinson J T, Tabakman S M, Liang Y Y, Wang H L, Casalongue H S, Vinh D, Dai H J. Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy[J]. J. Am. Chem. Soc., 2011,133(17):6825-6831. doi: 10.1021/ja2010175
Hosseini S M, Mohammadnejad J, Najafi-Taher R, Zadeh Z B, Tanhaei M, Ramakrishna S. Multifunctional Carbon-based nanoparticles: Theranostic applications in cancer therapy and diagnosis[J]. ACS Appl. Bio Mater., 2023,6(4):1323-1338. doi: 10.1021/acsabm.2c01000
Fisher J W, Sarkar S, Buchanan C F, Szot C S, Whitney J, Hatcher H C, Torti S V, Rylander C G, Rylander M N. Photothermal response of human and murine cancer cells to multiwalled carbon nanotubes after laser irradiation[J]. Cancer Res., 2010,70(23):9855-9864. doi: 10.1158/0008-5472.CAN-10-0250
Kandasamy G, Maity D. Multifunctional theranostic nanoparticles for biomedical cancer treatments: A comprehensive review[J]. Mater. Sci. Eng. C Mater. Biol. Appl., 2021,127112199. doi: 10.1016/j.msec.2021.112199
Sobhani Z, Behnam M A, Emami F, Dehghanian A, Jamhiri I. Photothermal therapy of melanoma tumor using multiwalled carbon nanotubes[J]. Int. J. Nanomed., 2017,12:4509-4517. doi: 10.2147/IJN.S134661
Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 2005,438(7065):197-200. doi: 10.1038/nature04233
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Electric field effect in atomically thin carbon films[J]. Science, 2004,306(5696):666-669. doi: 10.1126/science.1102896
Chou S S, Kaehr B, Kim J, Foley B M, De M, Hopkins P E, Huang J X, Brinker C J, Dravid V P. Chemically exfoliated MoS2 as near-infrared photothermal agents[J]. Angew. Chem. Int. Ed., 2013,52(15):4160-4164. doi: 10.1002/anie.201209229
Liu S, Pan X T, Liu H Y. Two-dimensional nanomaterials for photothermal therapy[J]. Angew. Chem. Int. Ed., 2020,59(15):5890-5900. doi: 10.1002/anie.201911477
Kroto H W, Heath J R, O'Brien S C, Curl R F, Smalley R E. C60: Buckminsterfullerene[J]. Nature, 1985,318(6042):162-163. doi: 10.1038/318162a0
Krishna V, Stevens N, Koopman B, Moudgil B. Optical heating and rapid transformation of functionalized fullerenes[J]. Nat. Nanotechnol., 2010,5(5):330-334. doi: 10.1038/nnano.2010.35
Krishna V, Singh A, Sharma P, Iwakuma N, Wang Q, Zhang Q Z, Knapik J, Jiang H B, Grobmyer S R, Koopman B, Moudgil B. Polyhydroxy fullerenes for non-invasive cancer imaging and therapy[J]. Small, 2010,6(20):2236-2241. doi: 10.1002/smll.201000847
Feng L L, He F, Dai Y L, Liu B, Yang G X, Gai S L, Niu N, Lv R C, Li C X, Yang P P. A versatile near infrared light triggered dual-photosensitizer for synchronous bioimaging and photodynamic therapy[J]. ACS Appl. Mater. Interfaces, 2017,9(15):12993-13008. doi: 10.1021/acsami.7b00651
Chan M H, Pan Y T, Lee I J, Chen C W, Chan Y C, Hsiao M, Wang F, Sun L D, Chen X Y, Liu R S. Minimizing the heat effect of photodynamic therapy based on inorganic nanocomposites mediated by 808 nm near-infrared light[J]. Small, 2017,13(21)1700038. doi: 10.1002/smll.201700038
Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum M W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Adv. Mater., 2011,23(37):4248-4253. doi: 10.1002/adma.201102306
Nosaka Y, Daimon T, Nosaka A Y, Murakami Y. Singlet oxygen formation in photocatalytic TiO2 aqueous suspension[J]. Phys. Chem. Chem. Phys., 2004,6(11):2917-2918. doi: 10.1039/b405084c
Yang G X, Yang D, Yang P P, Lv R C, Li C X, Zhong C N, He F, Gai S L, Lin J. A single 808 nm near-infrared light-mediated multiple imaging and photodynamic therapy based on titania coupled upconversion nanoparticles[J]. Chem. Mat., 2015,27(23):7957-7968. doi: 10.1021/acs.chemmater.5b03136
Yang D, Gulzar A, Yang G X, Gai S L, He F, Dai Y L, Zhong C N, Yang P P. Au nanoclusters sensitized black TiO2-x nanotubes for enhanced photodynamic therapy driven by near-infrared light[J]. Small, 2017,13(48)1703007. doi: 10.1002/smll.201703007
WANG Z X, LIU Y, ZHAO P, ZHANG X D, YANG Y M, SUN P, ZHANG X Y, FENG Y, ZHENG T T, CHEN C, LI W. Near-Infrared photothermal conversion agent oxygen-deficient molybdenum dioxide: Preparation and application in photothermal therapy[J]. Chinese J. Inorg. Chem., 2022,38(9):1739-1751.
Liu W, Li X S, Li W T, Zhang Q Q, Bai H, Li J F, Xi G C. Highly stable molybdenum dioxide nanoparticles with strong plasmon resonance are promising in photothermal cancer therapy[J]. Biomaterials, 2018,163:43-54. doi: 10.1016/j.biomaterials.2018.02.021
Shandong University of Traditional Chinese Medicine. A molybdenum dioxide photoresponsive nano-material and its preparation method and application: CN202110835434.3. 2021-10-15.
Song G S, Hao J L, Liang C, Liu T, Gao M, Cheng L, Hu J Q, Liu Z. Degradable molybdenum oxide nanosheets with rapid clearance and efficient tumor homing capabilities as a therapeutic nanoplatform[J]. Angew. Chem. Int. Ed., 2016,55(6):2122-2126. doi: 10.1002/anie.201510597
Li B, Wang X, Wu X Y, He G J, Xu R Y, Lu X W, Wang F R, Parkin I P. Phase and morphological control of MoO(3-x) nanostructures for efficient cancer theragnosis therapy[J]. Nanoscale, 2017,9(31):11012-11016. doi: 10.1039/C7NR03469E
Liu T, Shi S, Liang C, Shen S, Cheng L, Wang C, Song X, Goel S, Barnhart T E, Cai W, Liu Z. Iron oxide decorated MoS2 nanosheets with double PEGylation for chelator-free radiolabeling and multimodal imaging guided photothermal therapy[J]. ACS Nano, 2015,9(1):950-960. doi: 10.1021/nn506757x
Cheng L, Liu J J, Gu X, Gong H, Shi X Z, Liu T, Wang C, Wang X Y, Liu G, Xing H Y, Bu W B, Sun B Q, Liu Z. PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy[J]. Adv. Mater., 2014,26(12):1886-1893. doi: 10.1002/adma.201304497
Wan X F, Liu M X, Ma M Z, Chen D Y, Wu N, Li L, Li Z J, Lin G M, Wang X M, Xu G X. The ultrasmall biocompatible CuS@BSA nanoparticle and its photothermal effects[J]. Front. Pharmacol., 2019,10141. doi: 10.3389/fphar.2019.00141
Hu C L, Zhang Z X, Liu S N, Liu X J, Pang M L. Monodispersed CuSe sensitized covalent organic framework photosensitizer with an enhanced photodynamic and photothermal effect for cancer therapy[J]. ACS Appl. Mater. Interfaces, 2019,11(26):23072-23082. doi: 10.1021/acsami.9b08394
Liu T, Wang C, Gu X, Gong H, Cheng L, Shi X Z, Feng L Z, Sun B Q, Liu Z. Drug delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer[J]. Adv. Mater., 2014,26(21):3433-3440. doi: 10.1002/adma.201305256
Chen W S, Ouyang J, Liu H, Chen M, Zeng K, Sheng J P, Liu Z J, Han Y J, Wang L Q, Li J, Deng L, Liu Y N, Guo S J. Black phosphorus nanosheet-based drug delivery system for synergistic photodynamic/photothermal/chemotherapy of cancer[J]. Adv. Mater., 2017,29(5)1603864. doi: 10.1002/adma.201603864
Yang D, Yang G X, Yang P P, Lv R C, Gai S L, Li C X, He F, Lin J. Assembly of Au plasmonic photothermal agent and iron oxide nanoparticles on ultrathin black phosphorus for targeted photothermal and photodynamic cancer therapy[J]. Adv. Funct. Mater., 2017,27(18)1700371. doi: 10.1002/adfm.201700371
Shao J D, Ruan C S, Xie H H, Li Z B, Wang H Y, Chu P K, Yu X F. Black-phosphorus-incorporated hydrogel as a sprayable and biodegradable photothermal platform for postsurgical treatment of cancer[J]. Adv. Sci., 2018,5(5)1700848. doi: 10.1002/advs.201700848
Li Y, Liu Z M, Hou Y Q, Yang G C, Fei X X, Zhao H N, Guo Y X, Su C K, Wang Z, Zhong H Q, Zhuang Z F, Guo Z Y. Multifunctional nanoplatform based on black phosphorus quantum dots for bioimaging and photodynamic/photothermal synergistic cancer therapy[J]. ACS Appl. Mater. Interfaces, 2017,9(30):25098-25106. doi: 10.1021/acsami.7b05824
Wang X, Song J, Qu J L. Antimonene: From experimental preparation to practical application[J]. Angew. Chem. Int. Ed., 2019,58(6):1574-1584. doi: 10.1002/anie.201808302
Ares P, Palacios J J, Abellan G, Gomez-Herrero J, Zamora F. Recent progress on antimonene: A new bidimensional material[J]. Adv. Mater., 2018,30(2)1703771. doi: 10.1002/adma.201703771
He C B, Liu D M, Lin W B. Nanomedicine applications of hybrid nanomaterials built from metal‑ligand coordination bonds: Nanoscale metal-organic frameworks and nanoscale coordination polymers[J]. Chem. Rev., 2015,115(19):11079-11108. doi: 10.1021/acs.chemrev.5b00125
Zeng L J, Cao Y H, He L, Ding S S, Bian X W, Tian G. Metal-ligand coordination nanomaterials for radiotherapy: Emerging synergistic cancer therapy[J]. J. Mater. Chem. B, 2021,9(2):208-227. doi: 10.1039/D0TB02294B
Nejad Z K, Khandar A A, Khatamian M, Ghorbani M. Investigating of the anticancer activity of salen/salophen metal complexes based on graphene quantum dots: Induction of apoptosis as part of biological activity[J]. Int. J. Pharm., 2023,642123092. doi: 10.1016/j.ijpharm.2023.123092
Shen H, Xu Z, Hazer M S A, Wu Q Y, Peng J, Qin R X, Malola S, Teo B K, H kkinen H, Zheng N F. Surface coordination of multiple ligands endows N-heterocyclic carbene-stabilized gold nanoclusters with high robustness and surface reactivity[J]. Angew. Chem. Int. Ed., 2021,60(7):3752-3758. doi: 10.1002/anie.202013718
Wei F, Kuang S, Rees T W, Liao X, Liu J, Luo D, Wang J, Zhang X, Ji L, Chao H. Ruthenium(Ⅱ) complexes coordinated to graphitic carbon nitride: Oxygen self-sufficient photosensitizers which produce multiple ROS for photodynamic therapy in hypoxia[J]. Biomaterials, 2021,276121064. doi: 10.1016/j.biomaterials.2021.121064
Shen J, Karges J, Xiong K, Chen Y, Ji L, Chao H. Cancer cell membrane camouflaged iridium complexes functionalized black-titanium nanoparticles for hierarchical-targeted synergistic NIR-Ⅱ photothermal and sonodynamic therapy[J]. Biomaterials, 2021,275120979. doi: 10.1016/j.biomaterials.2021.120979
Wei F, Chen Z, Shen X C, Ji L, Chao H. Recent progress in metal complexes functionalized nanomaterials for photodynamic therapy[J]. Chem. Commun., 2023,59(46):6956-6968. doi: 10.1039/D3CC01355C
Arora S, Nagpal R, Gusain M, Singh B, Pan Y W, Yadav D, Ahmed I, Kumar V, Parshad B. Organic-inorganic porphyrinoid frameworks for biomolecule sensing[J]. ACS Sens., 2023,8(2):443-464. doi: 10.1021/acssensors.2c02408
Forster R J, Bertoncello P, Keyes T E. Electrogenerated chemiluminescence[J]. Annu. Rev. Anal. Chem., 2009,2:359-385. doi: 10.1146/annurev-anchem-060908-155305
Lin W B, Rieter W J, Taylor K M L. Modular synthesis of functional nanoscale coordination polymers[J]. Angew. Chem. Int. Ed., 2009,48(4):650-658. doi: 10.1002/anie.200803387
Yang Y, Liu J J, Liang C, Feng L Z, Fu T T, Dong Z L, Chao Y, Li Y G, Lu G, Chen M W, Liu Z. Nanoscale metal-organic particles with rapid clearance for magnetic resonance imaging-guided photothermal therapy[J]. ACS Nano, 2016,10(2):2774-2781. doi: 10.1021/acsnano.5b07882
Dadashi J, Khaleghian M, Hanifehpour Y, Mirtamizdoust B, Joo S W. Lead(Ⅱ)-azido metal-organic coordination polymers: Synthesis, structure and application in PbO nanomaterials preparation[J]. Nanomaterials, 2022,12(13)2257. doi: 10.3390/nano12132257
Liu Y J, Bhattarai P, Dai Z F, Chen X Y. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer[J]. Chem. Soc. Rev., 2019,48(7):2053-2108. doi: 10.1039/C8CS00618K
de Melo-Diogo D, Pais-Silva C, Dias D R, Moreira A F, Correia I J. Strategies to improve cancer photothermal therapy mediated by nanomaterials[J]. Adv. Healthcare Mater., 2017,6(10)1700073. doi: 10.1002/adhm.201700073
Wang P, Chen B Q, Zhan Y Y, Wang L G, Luo J, Xu J, Zhan L L, Li Z H, Liu Y G, Wei J C. Enhancing the efficiency of mild-temperature photothermal therapy for cancer assisting with various strategies[J]. Pharmaceutics, 2022,14(11)2279. doi: 10.3390/pharmaceutics14112279
Kim R Y, Hu L K, Foster B S, Gragoudas E S, Young L H Y. Photodynamic therapy of pigmented choroidal melanomas of greater than 3-mm thickness[J]. Ophthalmology, 1996,103(12):2029-2036. doi: 10.1016/S0161-6420(96)30391-6
Bagley A F, Hill S, Rogers G S, Bhatia S N. Plasmonic photothermal heating of intraperitoneal tumors through the use of an implanted near-infrared source[J]. ACS Nano, 2013,7(9):8089-8097. doi: 10.1021/nn4033757
Xin Lv , Hongxing Zhang , Kaibo Duan , Wenhui Dai , Zhihui Wen , Wei Guo , Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090
Peng GENG , Guangcan XIANG , Wen ZHANG , Haichuang LAN , Shuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155
Qi Wang , Yicong Gao , Feng Lu , Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141
Wenjing ZHANG , Xiaoqing WANG , Zhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254
Di WU , Ruimeng SHI , Zhaoyang WANG , Yuehua SHI , Fan YANG , Leyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135
Zhuoya WANG , Le HE , Zhiquan LIN , Yingxi WANG , Ling LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194
Tingting XU , Wenjing ZHANG , Yongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229
Jialiang XU , Jiabin CUI . Recent biological applications of corroles: From diagnosis to therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2303-2317. doi: 10.11862/CJIC.20240245
Min LI , Xianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
Xinxin JING , Weiduo WANG , Hesu MO , Peng TAN , Zhigang CHEN , Zhengying WU , Linbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
. . Chinese Journal of Inorganic Chemistry, 2024, 40(11): 0-0.
Xiaxue Chen , Yuxuan Yang , Ruolin Yang , Yizhu Wang , Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019
Baohua LÜ , Yuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105
Runhua Chen , Qiong Wu , Jingchen Luo , Xiaolong Zu , Shan Zhu , Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052
Zunyuan Xie , Lijin Yang , Zixiao Wan , Xiaoyu Liu , Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137
Lijuan Wang , Yuping Ning , Jian Li , Sha Luo , Xiongfei Luo , Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
The photosensitizer in the triplet state reacts with biological substrates (type Ⅰ reaction) or surrounding oxygen (type Ⅱ reaction) to produce highly toxic ROS; The ROS generated by type Ⅰ reaction is active radicals, and 1O2 is produced by type Ⅱ reaction; These ROS can oxidize tumor cell membranes, proteins, DNA, etc., causing irreversible cellular damage; ISC: inter-system crossing; R: biological substrate; R*: oxidized biological substrate.
At 24 h p.i., the tumors were irradiated under the 808 nm laser at the intensity of 0.6 W·cm-2; Scale bar: 200 μm; PBS=phosphate buffered saline.