Citation: Jiahui CHEN, Tingting ZHENG, Xiuyun ZHANG, Wei LÜ. Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106 shu

Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors

Figures(7)

  • In recent years, non-invasive photothermal therapy (PTT) and photodynamic therapy (PDT) have been booming in the field of treating cancer. They offer many advantages over chemotherapy and other traditional cancer treatments. Among various types of PTT and PDT agents for cancer, some inorganic nanomaterials with different properties can achieve highly effective cancer PTT or PDT, because compared with other materials, they have the advantage of strong absorption in the near-infrared (NIR) window. In addition to being used alone, inorganic nanomaterials can also be easily combined with other types of materials, chemical reagents, or drugs to construct multifunctional composite nano-therapeutic platforms. They are used to produce the synergistic effects of PTT, PDT, chemotherapy, and other therapies, enhance the therapeutic effect, and reduce toxicity and side effects to improve the cure rate of cancer patients. This review summarizes the latest research progress of common NIR inorganic nanomaterials in the field of cancer PTT and PDT, involving metal nanoparticles, carbon nanomaterials, MXenes, transition metal oxides and chalcogenides, black phosphorus nanosheets, and complex nanomaterials. The PTT and PDT therapeutic properties of these inorganic nanomaterials are mainly introduced. Finally, the research and development prospects of NIR inorganic nanosystems for cancer PTT and PDT in the future are put forward.
  • 加载中
    1. [1]

      ZHENG Z L, QU B T, YANG X R, LIU L, ZHANG R P. Tumor-targeted Pt-Cu nanoplatform for photo-thermal therapy guided by the second near-infrared window photoacoustic imaging[J]. Chinese J. Inorg. Chem., 2021,37(11):1991-2001.

    2. [2]

      Shanmugam V, Selvakumar S, Yeh C S. Near-infrared light-responsive nanomaterials in cancer therapeutics[J]. Chem. Soc. Rev., 2014,43(17):6254-6287. doi: 10.1039/C4CS00011K

    3. [3]

      Gai S L, Yang G X, Yang P P, He F, Lin J, Jin D Y, Xing B G. Recent advances in functional nanomaterials for light-triggered cancer therapy[J]. Nano Today, 2018,19:146-187. doi: 10.1016/j.nantod.2018.02.010

    4. [4]

      Bao Z H, Liu X R, Liu Y D, Liu H Z, Zhao K. Near-infrared light-responsive inorganic nanomaterials for photothermal therapy[J]. Asian J. Pharm. Sci., 2016,11(3):349-364. doi: 10.1016/j.ajps.2015.11.123

    5. [5]

      Li S H, Yang W, Liu Y, Song X R, Liu R, Chen G L, Lu C H, Yang H H. Engineering of tungsten carbide nanoparticles for imaging-guided simile 1 064 nm laser-activated dual-type photodynamic and photothermal therapy of cancer[J]. Nano Res., 2018,11(9):4859-4873. doi: 10.1007/s12274-018-2075-z

    6. [6]

      Guo Y X, Li Y, Zhang W L, Zu H R, Yu H H, Li D L, Xiong H L, Hormel T T, Hu C F, Guo Z Y, Liu Z M. Insights into the deep-tissue photothermal therapy in near-infrared Ⅱ region based on tumor-targeted MoO2 nanoaggregates[J]. Sci. China-Mater., 2020,63(6):1085-1098. doi: 10.1007/s40843-019-1272-0

    7. [7]

      Zhang Z J, Wang J, Chen C Y. Near-infrared light-mediated nanoplatforms for cancer thermo-chemotherapy and optical imaging[J]. Adv. Mater., 2013,25(28):3869-3880. doi: 10.1002/adma.201301890

    8. [8]

      Wang Y F, Meng H M, Li Z H. Near-infrared inorganic nanomaterial-based nanosystems for photothermal therapy[J]. Nanoscale, 2021,13(19):8751-8772. doi: 10.1039/D1NR00323B

    9. [9]

      Amendola V, Pilot R, Frasconi M, Maragò O M, Iatì M A. Surface plasmon resonance in gold nanoparticles: A review[J]. J. Phys.-Condes. Matter, 2017,29(20)203002. doi: 10.1088/1361-648X/aa60f3

    10. [10]

      Tee S Y, Ye E, Teng C P, Tanaka Y, Tang K Y, Win K Y, Han M Y. Advances in photothermal nanomaterials for biomedical, environmental and energy applications[J]. Nanoscale, 2021,13(34):14268-14286. doi: 10.1039/D1NR04197E

    11. [11]

      Gao M M, Zhu L L, Peh C K, Ho G W. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production[J]. Energy Environ. Sci., 2019,12(3):841-864. doi: 10.1039/C8EE01146J

    12. [12]

      Younis M R, He G, Qu J L, Lin J, Huang P, Xia X H. Inorganic nanomaterials with intrinsic singlet oxygen generation for photodynamic therapy[J]. Adv. Sci., 2021,8(21)e2102587. doi: 10.1002/advs.202102587

    13. [13]

      Debele T A, Peng S, Tsai H C. Drug carrier for photodynamic cancer therapy[J]. Int. J. Mol. Sci., 2015,16(9):22094-22136. doi: 10.3390/ijms160922094

    14. [14]

      Hong E J, Choi D G, Shim M S. Targeted and effective photodynamic therapy for cancer using functionalized nanomaterials[J]. Acta Pharm. Sin. B, 2016,6(4):297-307. doi: 10.1016/j.apsb.2016.01.007

    15. [15]

      Kessel D, Reiners J J. Photodynamic therapy: Autophagy and mitophagy, apoptosis and paraptosis[J]. Autophagy, 2020,16(11):2098-2101. doi: 10.1080/15548627.2020.1783823

    16. [16]

      Wang Y Y, Liu Y C, Sun H W, Guo D S. Type Ⅰ photodynamic therapy by organic-inorganic hybrid materials: From strategies to applications[J]. Coord. Chem. Rev., 2019,395:46-62. doi: 10.1016/j.ccr.2019.05.016

    17. [17]

      Jia J, Liu G Y, Xu W J, Tian X L, Li S B, Han F, Feng Y H, Dong X C, Chen H Y. Fine-tuning the homometallic interface of Au-on-Au nanorods and their photothermal therapy in the NIR-Ⅱ window[J]. Angew. Chem. Int. Ed., 2020,59(34):14443-14448. doi: 10.1002/anie.202000474

    18. [18]

      Wang M Q, Liang Y, Zhang Z C, Ren G H, Liu Y J, Wu S S, Shen J. Ag@Fe3O4@C nanoparticles for multi-modal imaging-guided chemo-photothermal synergistic targeting for cancer therapy[J]. Anal. Chim. Acta, 2019,1086:122-132. doi: 10.1016/j.aca.2019.08.035

    19. [19]

      Li S S, Gu K, Wang H, Xu B L, Li H W, Shi X H, Huang Z J, Liu H Y. Degradable holey palladium nanosheets with highly active 1D nanoholes for synergetic phototherapy of hypoxic tumors[J]. J. Am. Chem. Soc., 2020,142(12):5649-5656. doi: 10.1021/jacs.9b12929

    20. [20]

      Tian B, Wang C, Zhang S, Feng L Z, Liu Z. Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide[J]. ACS Nano, 2011,5(9):7000-7009. doi: 10.1021/nn201560b

    21. [21]

      Hu Z, Zhao F, Wang Y F, Huang Y D, Chen L, Li N, Li J, Li Z H, Yi G X. Facile fabrication of a C60-polydopamine-graphene nanohybrid for single light induced photothermal and photodynamic therapy[J]. Chem. Commun., 2014,50(74):10815-10818. doi: 10.1039/C4CC04416A

    22. [22]

      Feng L L, He F, Yang G X, Gai S L, Dai Y L, Li C X, Yang P P. NIR-driven graphitic-phase carbon nitride nanosheets for efficient bioimaging and photodynamic therapy[J]. J. Mater. Chem. B, 2016,4(48):8000-8008. doi: 10.1039/C6TB02232D

    23. [23]

      Lin H, Wang X G, Yu L D, Chen Y, Shi J L. Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion[J]. Nano Lett., 2017,17(1):384-391. doi: 10.1021/acs.nanolett.6b04339

    24. [24]

      Dong Y S, Dong S M, Wang Z, Feng L L, Sun Q Q, Chen G Y, He F, Liu S K, Li W T, Yang P P. Multimode imaging-guided photothermal/chemodynamic synergistic therapy nanoagent with a tumor microenvironment responded effect[J]. ACS Appl. Mater. Interfaces, 2020,12(47):52479-52491. doi: 10.1021/acsami.0c17923

    25. [25]

      Wang F, Song C Q, Guo W, Ding D D, Zhang Q, Gao Y, Yan M, Guo C S, Liu S Q. Urchin-like tungsten suboxide for photoacoustic imaging-guided photothermal and photodynamic cancer combination therapy[J]. New J. Chem., 2017,41(23):14179-14187. doi: 10.1039/C7NJ03078A

    26. [26]

      Wang S H, Riedinger A, Li H B, Fu C H, Liu H Y, Li L L, Liu T L, Tan L F, Barthel M J, Pugliese G, De Donato F, D'Abbusco M S, Meng X W, Manna L, Meng H, Pellegrino T. Plasmonic copper sulfide nanocrystals exhibiting near-infrared photothermal and photodynamic therapeutic effects[J]. ACS Nano, 2015,9(2):1788-1800. doi: 10.1021/nn506687t

    27. [27]

      Jiang F, Ding B B, Liang S, Zhao Y J, Cheng Z Y, Xing B G, Ma P A, Lin J. Intelligent MoS2-CuO heterostructures with multiplexed imaging and remarkably enhanced antitumor efficacy via synergetic photothermal therapy/chemodynamic therapy/immunotherapy[J]. Biomaterials, 2021,268120545. doi: 10.1016/j.biomaterials.2020.120545

    28. [28]

      Lv R C, Yang D, Yang P P, Xu J T, He F, Gai S L, Li C X, Dai Y L, Yang G X, Lin J. Integration of upconversion nanoparticles and ultrathin black phosphorus for efficient photodynamic theranostics under 808 nm near-infrared light irradiation[J]. Chem. Mat., 2016,28(13):4724-4734. doi: 10.1021/acs.chemmater.6b01720

    29. [29]

      Wei F M, Karges J, Shen J C, Xie L A, Xiong K, Zhang X T, Ji L N, Chao H. A mitochondria-localized oxygen self-sufficient two-photon nano-photosensitizer for ferroptosis-boosted photodynamic therapy under hypoxia[J]. Nano Today, 2022,44101509. doi: 10.1016/j.nantod.2022.101509

    30. [30]

      Menon J U, Jadeja P, Tambe P, Vu K, Yuan B H, Nguyen K T. Nanomaterials for photo-based diagnostic and therapeutic applications[J]. Theranostics, 2013,3(3):152-166. doi: 10.7150/thno.5327

    31. [31]

      Porret E, Le Guével X, Coll J L. Gold nanoclusters for biomedical applications: toward in vivo studies[J]. J. Mater. Chem. B, 2020,8(11):2216-2232. doi: 10.1039/C9TB02767J

    32. [32]

      Park S, Lee W J, Park S, Choi D, Kim S, Park N. Reversibly pH-responsive gold nanoparticles and their applications for photothermal cancer therapy[J]. Sci. Rep., 2019,9(1)20180. doi: 10.1038/s41598-019-56754-8

    33. [33]

      Park J E, Kim M, Hwang J H, Nam J M. Golden opportunities: Plasmonic gold nanostructures for biomedical applications based on the second near-infrared window[J]. Small Methods, 2017,1(3)1600032. doi: 10.1002/smtd.201600032

    34. [34]

      Liu H Y, Chen D, Li L L, Liu T L, Tan L F, Wu X L, Tang F Q. Multifunctional gold nanoshells on silica nanorattles: A platform for the combination of photothermal therapy and chemotherapy with low systemic toxicity[J]. Angew. Chem. Int. Ed., 2011,50(4):891-895. doi: 10.1002/anie.201002820

    35. [35]

      Yang S, You Q, Yang L F, Li P S, Lu Q L, Wang S Y, Tan F P, Ji Y H, Li N. Rodlike MSN@Au nanohybrid-modified supermolecular photosensitizer for NIRF/MSOT/CT/MR quadmodal imaging-guided photothermal/photodynamic cancer therapy[J]. ACS Appl. Mater. Interfaces, 2019,11(7):6777-6788. doi: 10.1021/acsami.8b19565

    36. [36]

      Zhao P, Liu S W, Wang L, Liu G J, Cheng Y R, Lin M, Sui K Y, Zhang H. Alginate mediated functional aggregation of gold nanoclusters for systemic photothermal therapy and efficient renal clearance[J]. Carbohydr. Polym., 2020,241116344. doi: 10.1016/j.carbpol.2020.116344

    37. [37]

      Wang S J, Huang P, Nie L M, Xing R J, Liu D B, Wang Z, Lin J, Chen S H, Niu G, Lu G M, Chen X Y. Single continuous wave laser induced photodynamic/plasmonic photothermal therapy using photosensitizer-functionalized gold nanostars[J]. Adv. Mater., 2013,25(22):3055-3061. doi: 10.1002/adma.201204623

    38. [38]

      Lin J, Wang S J, Huang P, Wang Z, Chen S H, Niu G, Li W W, He J, Cui D X, Lu G M, Chen X Y, Nie Z H. Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy[J]. ACS Nano, 2013,7(6):5320-5329. doi: 10.1021/nn4011686

    39. [39]

      Kim H, Chung K, Lee S, Kim D H, Lee H. Near-infrared light-responsive nanomaterials for cancer theranostics[J]. Wiley Interdiscip. Rev.-Nanomed. Nanobiotechnol., 2016,8(1):23-45. doi: 10.1002/wnan.1347

    40. [40]

      Morales-Dalmau J, Vilches C, de Miguel I, Sanz V, Quidant R. Optimum morphology of gold nanorods for light-induced hyperthermia[J]. Nanoscale, 2018,10(5):2632-2638. doi: 10.1039/C7NR06825E

    41. [41]

      Yang D P, Liu X, Teng C P, Owh C, Win K Y, Lin M, Loh X J, Wu Y L, Li Z B, Ye E Y. Unexpected formation of gold nanoflowers by a green synthesis method as agents for a safe and effective photothermal therapy[J]. Nanoscale, 2017,9(41):15753-15759. doi: 10.1039/C7NR06286A

    42. [42]

      Espinosa A, Curcio A, Cabana S, Radtke G, Bugnet M, Kolosnjaj-Tabi J, Pechoux C, Alvarez-Lorenzo C, Botton G A, Silva A K A, Abou-Hassan A, Wilhelm C. Intracellular biodegradation of Ag nanoparticles, storage in ferritin, and protection by a Au shell for enhanced photothermal therapy[J]. ACS Nano, 2018,12(7):6523-6535. doi: 10.1021/acsnano.8b00482

    43. [43]

      Song M L, Liu N, He L, Liu G, Ling D S, Su X H, Sun X L. Porous hollow palladium nanoplatform for imaging-guided trimodal chemo-, photothermal-, and radiotherapy[J]. Nano Res., 2018,11(5):2796-2808. doi: 10.1007/s12274-017-1910-y

    44. [44]

      Huang X Q, Tang S H, Mu X L, Dai Y, Chen G X, Zhou Z Y, Ruan F X, Yang Z L, Zheng N F. Freestanding palladium nanosheets with plasmonic and catalytic properties[J]. Nat. Nanotechnol., 2011,6(1):28-32. doi: 10.1038/nnano.2010.235

    45. [45]

      Yu J, Liu S, Wang Y P, He X D, Zhang Q F, Qi Y X, Zhou D F, Xie Z G, Li X Y, Huang Y B. Synergistic enhancement of immunological responses triggered by hyperthermia sensitive Pt NPs via NIR laser to inhibit cancer relapse and metastasis[J]. Bioact. Mater., 2022,7:389-400.

    46. [46]

      Li L, Liu H, Bian J X, Zhang X Y, Fu Y H, Li Z, Wei S P, Xu Z C, Liu X K, Liu Z W, Wang D S, Gao D W. Ag/Pd bimetal nanozyme with enhanced catalytic and photothermal effects for ROS/hyperthermia/chemotherapy triple -modality antitumor therapy[J]. Chem. Eng. J., 2020,397125438. doi: 10.1016/j.cej.2020.125438

    47. [47]

      Zhang M, Wang W T, Cui Y J, Chu X H, Sun B H, Zhou N L, Shen J. Magnetofluorescent Fe3O4/carbon quantum dots coated single-walled carbon nanotubes as dual-modal targeted imaging and chemo/photodynamic/photothermal triple-modal therapeutic agents[J]. Chem. Eng. J., 2018,338:526-538. doi: 10.1016/j.cej.2018.01.081

    48. [48]

      Robinson J T, Tabakman S M, Liang Y Y, Wang H L, Casalongue H S, Vinh D, Dai H J. Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy[J]. J. Am. Chem. Soc., 2011,133(17):6825-6831. doi: 10.1021/ja2010175

    49. [49]

      Hosseini S M, Mohammadnejad J, Najafi-Taher R, Zadeh Z B, Tanhaei M, Ramakrishna S. Multifunctional Carbon-based nanoparticles: Theranostic applications in cancer therapy and diagnosis[J]. ACS Appl. Bio Mater., 2023,6(4):1323-1338. doi: 10.1021/acsabm.2c01000

    50. [50]

      Fisher J W, Sarkar S, Buchanan C F, Szot C S, Whitney J, Hatcher H C, Torti S V, Rylander C G, Rylander M N. Photothermal response of human and murine cancer cells to multiwalled carbon nanotubes after laser irradiation[J]. Cancer Res., 2010,70(23):9855-9864. doi: 10.1158/0008-5472.CAN-10-0250

    51. [51]

      Kandasamy G, Maity D. Multifunctional theranostic nanoparticles for biomedical cancer treatments: A comprehensive review[J]. Mater. Sci. Eng. C Mater. Biol. Appl., 2021,127112199. doi: 10.1016/j.msec.2021.112199

    52. [52]

      Sobhani Z, Behnam M A, Emami F, Dehghanian A, Jamhiri I. Photothermal therapy of melanoma tumor using multiwalled carbon nanotubes[J]. Int. J. Nanomed., 2017,12:4509-4517. doi: 10.2147/IJN.S134661

    53. [53]

      Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 2005,438(7065):197-200. doi: 10.1038/nature04233

    54. [54]

      Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Electric field effect in atomically thin carbon films[J]. Science, 2004,306(5696):666-669. doi: 10.1126/science.1102896

    55. [55]

      Chou S S, Kaehr B, Kim J, Foley B M, De M, Hopkins P E, Huang J X, Brinker C J, Dravid V P. Chemically exfoliated MoS2 as near-infrared photothermal agents[J]. Angew. Chem. Int. Ed., 2013,52(15):4160-4164. doi: 10.1002/anie.201209229

    56. [56]

      Liu S, Pan X T, Liu H Y. Two-dimensional nanomaterials for photothermal therapy[J]. Angew. Chem. Int. Ed., 2020,59(15):5890-5900. doi: 10.1002/anie.201911477

    57. [57]

      Kroto H W, Heath J R, O'Brien S C, Curl R F, Smalley R E. C60: Buckminsterfullerene[J]. Nature, 1985,318(6042):162-163. doi: 10.1038/318162a0

    58. [58]

      Krishna V, Stevens N, Koopman B, Moudgil B. Optical heating and rapid transformation of functionalized fullerenes[J]. Nat. Nanotechnol., 2010,5(5):330-334. doi: 10.1038/nnano.2010.35

    59. [59]

      Krishna V, Singh A, Sharma P, Iwakuma N, Wang Q, Zhang Q Z, Knapik J, Jiang H B, Grobmyer S R, Koopman B, Moudgil B. Polyhydroxy fullerenes for non-invasive cancer imaging and therapy[J]. Small, 2010,6(20):2236-2241. doi: 10.1002/smll.201000847

    60. [60]

      Feng L L, He F, Dai Y L, Liu B, Yang G X, Gai S L, Niu N, Lv R C, Li C X, Yang P P. A versatile near infrared light triggered dual-photosensitizer for synchronous bioimaging and photodynamic therapy[J]. ACS Appl. Mater. Interfaces, 2017,9(15):12993-13008. doi: 10.1021/acsami.7b00651

    61. [61]

      Chan M H, Pan Y T, Lee I J, Chen C W, Chan Y C, Hsiao M, Wang F, Sun L D, Chen X Y, Liu R S. Minimizing the heat effect of photodynamic therapy based on inorganic nanocomposites mediated by 808 nm near-infrared light[J]. Small, 2017,13(21)1700038. doi: 10.1002/smll.201700038

    62. [62]

      Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum M W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Adv. Mater., 2011,23(37):4248-4253. doi: 10.1002/adma.201102306

    63. [63]

      Nosaka Y, Daimon T, Nosaka A Y, Murakami Y. Singlet oxygen formation in photocatalytic TiO2 aqueous suspension[J]. Phys. Chem. Chem. Phys., 2004,6(11):2917-2918. doi: 10.1039/b405084c

    64. [64]

      Yang G X, Yang D, Yang P P, Lv R C, Li C X, Zhong C N, He F, Gai S L, Lin J. A single 808 nm near-infrared light-mediated multiple imaging and photodynamic therapy based on titania coupled upconversion nanoparticles[J]. Chem. Mat., 2015,27(23):7957-7968. doi: 10.1021/acs.chemmater.5b03136

    65. [65]

      Yang D, Gulzar A, Yang G X, Gai S L, He F, Dai Y L, Zhong C N, Yang P P. Au nanoclusters sensitized black TiO2-x nanotubes for enhanced photodynamic therapy driven by near-infrared light[J]. Small, 2017,13(48)1703007. doi: 10.1002/smll.201703007

    66. [66]

      WANG Z X, LIU Y, ZHAO P, ZHANG X D, YANG Y M, SUN P, ZHANG X Y, FENG Y, ZHENG T T, CHEN C, LI W. Near-Infrared photothermal conversion agent oxygen-deficient molybdenum dioxide: Preparation and application in photothermal therapy[J]. Chinese J. Inorg. Chem., 2022,38(9):1739-1751.

    67. [67]

      Liu W, Li X S, Li W T, Zhang Q Q, Bai H, Li J F, Xi G C. Highly stable molybdenum dioxide nanoparticles with strong plasmon resonance are promising in photothermal cancer therapy[J]. Biomaterials, 2018,163:43-54. doi: 10.1016/j.biomaterials.2018.02.021

    68. [68]

      Shandong University of Traditional Chinese Medicine. A molybdenum dioxide photoresponsive nano-material and its preparation method and application: CN202110835434.3. 2021-10-15.

    69. [69]

      Song G S, Hao J L, Liang C, Liu T, Gao M, Cheng L, Hu J Q, Liu Z. Degradable molybdenum oxide nanosheets with rapid clearance and efficient tumor homing capabilities as a therapeutic nanoplatform[J]. Angew. Chem. Int. Ed., 2016,55(6):2122-2126. doi: 10.1002/anie.201510597

    70. [70]

      Li B, Wang X, Wu X Y, He G J, Xu R Y, Lu X W, Wang F R, Parkin I P. Phase and morphological control of MoO(3-x) nanostructures for efficient cancer theragnosis therapy[J]. Nanoscale, 2017,9(31):11012-11016. doi: 10.1039/C7NR03469E

    71. [71]

      Liu T, Shi S, Liang C, Shen S, Cheng L, Wang C, Song X, Goel S, Barnhart T E, Cai W, Liu Z. Iron oxide decorated MoS2 nanosheets with double PEGylation for chelator-free radiolabeling and multimodal imaging guided photothermal therapy[J]. ACS Nano, 2015,9(1):950-960. doi: 10.1021/nn506757x

    72. [72]

      Cheng L, Liu J J, Gu X, Gong H, Shi X Z, Liu T, Wang C, Wang X Y, Liu G, Xing H Y, Bu W B, Sun B Q, Liu Z. PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy[J]. Adv. Mater., 2014,26(12):1886-1893. doi: 10.1002/adma.201304497

    73. [73]

      Wan X F, Liu M X, Ma M Z, Chen D Y, Wu N, Li L, Li Z J, Lin G M, Wang X M, Xu G X. The ultrasmall biocompatible CuS@BSA nanoparticle and its photothermal effects[J]. Front. Pharmacol., 2019,10141. doi: 10.3389/fphar.2019.00141

    74. [74]

      Hu C L, Zhang Z X, Liu S N, Liu X J, Pang M L. Monodispersed CuSe sensitized covalent organic framework photosensitizer with an enhanced photodynamic and photothermal effect for cancer therapy[J]. ACS Appl. Mater. Interfaces, 2019,11(26):23072-23082. doi: 10.1021/acsami.9b08394

    75. [75]

      Liu T, Wang C, Gu X, Gong H, Cheng L, Shi X Z, Feng L Z, Sun B Q, Liu Z. Drug delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer[J]. Adv. Mater., 2014,26(21):3433-3440. doi: 10.1002/adma.201305256

    76. [76]

      Chen W S, Ouyang J, Liu H, Chen M, Zeng K, Sheng J P, Liu Z J, Han Y J, Wang L Q, Li J, Deng L, Liu Y N, Guo S J. Black phosphorus nanosheet-based drug delivery system for synergistic photodynamic/photothermal/chemotherapy of cancer[J]. Adv. Mater., 2017,29(5)1603864. doi: 10.1002/adma.201603864

    77. [77]

      Yang D, Yang G X, Yang P P, Lv R C, Gai S L, Li C X, He F, Lin J. Assembly of Au plasmonic photothermal agent and iron oxide nanoparticles on ultrathin black phosphorus for targeted photothermal and photodynamic cancer therapy[J]. Adv. Funct. Mater., 2017,27(18)1700371. doi: 10.1002/adfm.201700371

    78. [78]

      Shao J D, Ruan C S, Xie H H, Li Z B, Wang H Y, Chu P K, Yu X F. Black-phosphorus-incorporated hydrogel as a sprayable and biodegradable photothermal platform for postsurgical treatment of cancer[J]. Adv. Sci., 2018,5(5)1700848. doi: 10.1002/advs.201700848

    79. [79]

      Li Y, Liu Z M, Hou Y Q, Yang G C, Fei X X, Zhao H N, Guo Y X, Su C K, Wang Z, Zhong H Q, Zhuang Z F, Guo Z Y. Multifunctional nanoplatform based on black phosphorus quantum dots for bioimaging and photodynamic/photothermal synergistic cancer therapy[J]. ACS Appl. Mater. Interfaces, 2017,9(30):25098-25106. doi: 10.1021/acsami.7b05824

    80. [80]

      Wang X, Song J, Qu J L. Antimonene: From experimental preparation to practical application[J]. Angew. Chem. Int. Ed., 2019,58(6):1574-1584. doi: 10.1002/anie.201808302

    81. [81]

      Ares P, Palacios J J, Abellan G, Gomez-Herrero J, Zamora F. Recent progress on antimonene: A new bidimensional material[J]. Adv. Mater., 2018,30(2)1703771. doi: 10.1002/adma.201703771

    82. [82]

      He C B, Liu D M, Lin W B. Nanomedicine applications of hybrid nanomaterials built from metal‑ligand coordination bonds: Nanoscale metal-organic frameworks and nanoscale coordination polymers[J]. Chem. Rev., 2015,115(19):11079-11108. doi: 10.1021/acs.chemrev.5b00125

    83. [83]

      Zeng L J, Cao Y H, He L, Ding S S, Bian X W, Tian G. Metal-ligand coordination nanomaterials for radiotherapy: Emerging synergistic cancer therapy[J]. J. Mater. Chem. B, 2021,9(2):208-227. doi: 10.1039/D0TB02294B

    84. [84]

      Nejad Z K, Khandar A A, Khatamian M, Ghorbani M. Investigating of the anticancer activity of salen/salophen metal complexes based on graphene quantum dots: Induction of apoptosis as part of biological activity[J]. Int. J. Pharm., 2023,642123092. doi: 10.1016/j.ijpharm.2023.123092

    85. [85]

      Shen H, Xu Z, Hazer M S A, Wu Q Y, Peng J, Qin R X, Malola S, Teo B K, H kkinen H, Zheng N F. Surface coordination of multiple ligands endows N-heterocyclic carbene-stabilized gold nanoclusters with high robustness and surface reactivity[J]. Angew. Chem. Int. Ed., 2021,60(7):3752-3758. doi: 10.1002/anie.202013718

    86. [86]

      Wei F, Kuang S, Rees T W, Liao X, Liu J, Luo D, Wang J, Zhang X, Ji L, Chao H. Ruthenium(Ⅱ) complexes coordinated to graphitic carbon nitride: Oxygen self-sufficient photosensitizers which produce multiple ROS for photodynamic therapy in hypoxia[J]. Biomaterials, 2021,276121064. doi: 10.1016/j.biomaterials.2021.121064

    87. [87]

      Shen J, Karges J, Xiong K, Chen Y, Ji L, Chao H. Cancer cell membrane camouflaged iridium complexes functionalized black-titanium nanoparticles for hierarchical-targeted synergistic NIR-Ⅱ photothermal and sonodynamic therapy[J]. Biomaterials, 2021,275120979. doi: 10.1016/j.biomaterials.2021.120979

    88. [88]

      Wei F, Chen Z, Shen X C, Ji L, Chao H. Recent progress in metal complexes functionalized nanomaterials for photodynamic therapy[J]. Chem. Commun., 2023,59(46):6956-6968. doi: 10.1039/D3CC01355C

    89. [89]

      Arora S, Nagpal R, Gusain M, Singh B, Pan Y W, Yadav D, Ahmed I, Kumar V, Parshad B. Organic-inorganic porphyrinoid frameworks for biomolecule sensing[J]. ACS Sens., 2023,8(2):443-464. doi: 10.1021/acssensors.2c02408

    90. [90]

      Forster R J, Bertoncello P, Keyes T E. Electrogenerated chemiluminescence[J]. Annu. Rev. Anal. Chem., 2009,2:359-385. doi: 10.1146/annurev-anchem-060908-155305

    91. [91]

      Lin W B, Rieter W J, Taylor K M L. Modular synthesis of functional nanoscale coordination polymers[J]. Angew. Chem. Int. Ed., 2009,48(4):650-658. doi: 10.1002/anie.200803387

    92. [92]

      Yang Y, Liu J J, Liang C, Feng L Z, Fu T T, Dong Z L, Chao Y, Li Y G, Lu G, Chen M W, Liu Z. Nanoscale metal-organic particles with rapid clearance for magnetic resonance imaging-guided photothermal therapy[J]. ACS Nano, 2016,10(2):2774-2781. doi: 10.1021/acsnano.5b07882

    93. [93]

      Dadashi J, Khaleghian M, Hanifehpour Y, Mirtamizdoust B, Joo S W. Lead(Ⅱ)-azido metal-organic coordination polymers: Synthesis, structure and application in PbO nanomaterials preparation[J]. Nanomaterials, 2022,12(13)2257. doi: 10.3390/nano12132257

    94. [94]

      Liu Y J, Bhattarai P, Dai Z F, Chen X Y. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer[J]. Chem. Soc. Rev., 2019,48(7):2053-2108. doi: 10.1039/C8CS00618K

    95. [95]

      de Melo-Diogo D, Pais-Silva C, Dias D R, Moreira A F, Correia I J. Strategies to improve cancer photothermal therapy mediated by nanomaterials[J]. Adv. Healthcare Mater., 2017,6(10)1700073. doi: 10.1002/adhm.201700073

    96. [96]

      Wang P, Chen B Q, Zhan Y Y, Wang L G, Luo J, Xu J, Zhan L L, Li Z H, Liu Y G, Wei J C. Enhancing the efficiency of mild-temperature photothermal therapy for cancer assisting with various strategies[J]. Pharmaceutics, 2022,14(11)2279. doi: 10.3390/pharmaceutics14112279

    97. [97]

      Kim R Y, Hu L K, Foster B S, Gragoudas E S, Young L H Y. Photodynamic therapy of pigmented choroidal melanomas of greater than 3-mm thickness[J]. Ophthalmology, 1996,103(12):2029-2036. doi: 10.1016/S0161-6420(96)30391-6

    98. [98]

      Bagley A F, Hill S, Rogers G S, Bhatia S N. Plasmonic photothermal heating of intraperitoneal tumors through the use of an implanted near-infrared source[J]. ACS Nano, 2013,7(9):8089-8097. doi: 10.1021/nn4033757

  • 加载中
    1. [1]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    2. [2]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    3. [3]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    4. [4]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    5. [5]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    6. [6]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    7. [7]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    8. [8]

      Jialiang XUJiabin CUI . Recent biological applications of corroles: From diagnosis to therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2303-2317. doi: 10.11862/CJIC.20240245

    9. [9]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    10. [10]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    11. [11]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    12. [12]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    13. [13]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(11): 0-0.

    14. [14]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    15. [15]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    16. [16]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    17. [17]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    18. [18]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    19. [19]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    20. [20]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

Metrics
  • PDF Downloads(3)
  • Abstract views(135)
  • HTML views(73)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return