Citation: Zeyu XU, Anlei DANG, Bihua DENG, Xiaoxin ZUO, Yu LU, Ping YANG, Wenzhu YIN. Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099 shu

Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement

Figures(8)

  • The improved Hummers method was used to obtain GOQDs from flake graphite, which contained rich hydroxyl and carboxyl groups. With the as-fabricated GOQDs in hand, we constructed a GOQDs/OVA nano-vaccine using chicken ovalbumin (OVA) as a model antigen to evaluate the immune efficacy and safety. Results showed that GOQDs/OVA nano-vaccine had high water dispersibility and stability with a diameter of around 5 nm for 30 d. The maximum loading capacity of GOQDs for OVA was about 500 mg·g-1, and release rates of OVA were 74.65% and 56.93% in pH 5.5 and 7.4 after 24 h, respectively, displaying pH stimulus responsive release merits. With the concentration of GOQDs below 500 μg·mL-1, the biosecurity of GOQDs indicated that they were not causing hemolysis, cell damage, and pathological changes in important tissues. After immunization, GOQDs/OVA nano-vaccines could excite the high levels of immunoglobulin G (IgG), immunoglobulin G1 (IgG1), and immunoglobulin G2a (IgG2a) antibodies and improve secretions of interleukin-1β (IL-1β), interleukin-4 (IL-2), interleukin-4 (IL-4), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ), compared with the group of OVA alone. Meanwhile, GOQDs promoted an increase in the percentage of CD4+ and CD8+ T lymphocytes in the spleen.
  • 加载中
    1. [1]

      Sun B N, Yu S, Zhao D Y, Guo S H, Wang X H, Zhao K. Polysaccharides as vaccine adjuvants[J]. Vaccine, 2018,36(35):5226-5234. doi: 10.1016/j.vaccine.2018.07.040

    2. [2]

      HAN B, TANG S Q, ZHU D W, LI H L, FENG Y L, SUN C F, XU Y N, LENG H Y, WANG Y T, ZHANG Y M, TAI X C, ZHANG Y. Research progress of novel vaccine adjuvants[J]. China Animal Husbandry & Veterinary Medicine, 2023,50(6):2460-2467.  

    3. [3]

      Huang S M, Li B W, Ashraf U, Li Q, Lu X C, Gao X C, Cui M, Imran M, Ye J, Cao F F, Gu J J, Cao S B. Quaternized cationic carbon dots as antigen delivery systems for improving humoral and cellular immune responses[J]. ACS Appl. Nano Mater., 2020,3(9):9449-9461. doi: 10.1021/acsanm.0c02062

    4. [4]

      Du G S, Qin M, Sun X. Recent progress in application of nanovaccines for enhancing mucosal immune responses[J]. Acta Pharm. Sin. B, 2023,13(6):2334-2345. doi: 10.1016/j.apsb.2022.08.010

    5. [5]

      Li S X, Bennett Z T, Sumer B D, Gao J M. Nano-immune-engineering approaches to advance cancer immunotherapy: Lessons from ultra-pH-sensitive nanoparticles[J]. Acc. Chem. Res., 2020,53(11):2546-2557. doi: 10.1021/acs.accounts.0c00475

    6. [6]

      Yan H, Lin G B, Liu Z Y, Gu F, Zhang Y. Nano-adjuvants and immune agonists promote antitumor immunity of peptide amphiphiles[J]. Acta Biomater., 2023,161:213-225. doi: 10.1016/j.actbio.2023.02.034

    7. [7]

      Mao L Z, Ma P Q, Luo X, Cheng H W, Wang Z X, Ye E, Loh X J, Wu Y L, Li Z. Stimuli-responsive polymeric nanovaccines toward next-generation immunotherapy[J]. ACS Nano, 2023,17(11):9826-9849. doi: 10.1021/acsnano.3c02273

    8. [8]

      Wang X L, Gao X L, Wang L X, Lin J H, Liu Y. Advances of nanotechnology toward vaccine development against animal infectious diseases[J]. Adv. Funct. Mater., 2023,33(46)2305061. doi: 10.1002/adfm.202305061

    9. [9]

      WANG H J, YIN G. Orange emission graphene oxide quantum dots: A one-pot strategy for highly efficient fabrication and application in the imaging of pH in living cells[J]. Chinese J. Inorg. Chem, 2023,39(7):1338-1448.  

    10. [10]

      Li S, Guo Z, Zeng G D, Zhang Y, Xue W, Liu Z H. Polyethylenimine-modified fluorescent carbon dots as vaccine delivery system for intranasal immunization[J]. ACS Biomater. Sci. Eng., 2018,4(1):142-150. doi: 10.1021/acsbiomaterials.7b00370

    11. [11]

      Zhao L H, Shu M Y, Chen H L, Shi K L, Li Z Y. Preparation of graphene oxide-stabilized pickering emulsion adjuvant for Pgp3 recombinant vaccine and enhanced immunoprotection against chlamydia trachomatis infection[J]. Front. Immunol., 2023,141148253. doi: 10.3389/fimmu.2023.1148253

    12. [12]

      Huang S Y, Li Y Y, Zhang S, Chen Y M, Su W Q, Sanchez D J, Mai J D H, Zhi X, Chen H J, Ding X T. A self-assembled graphene oxide adjuvant induces both enhanced humoral and cellular immune responses in influenza vaccine[J]. J. Control Release, 2024,365:716-728. doi: 10.1016/j.jconrel.2023.11.047

    13. [13]

      Qin Y R, Zhou Z W, Pan S T, He Z X, Zhang X J, Qiu J X, Duan W, Yang T X, Zhou S F. Graphene quantum dots induce apoptosis, autophagy, and inflammatory response via p38 mitogen-activated protein kinase and nuclear factor-κB mediated signaling pathways in activated thp-1 macrophages[J]. Toxicology, 2015,327:62-76. doi: 10.1016/j.tox.2014.10.011

    14. [14]

      Du T, Liang J G, Dong N, Liu L, Fang L R, Xiao S B, Han H Y. Carbon dots as inhibitors of virus by activation of type Ⅰ interferon response[J]. Carbon, 2016,110:278-285. doi: 10.1016/j.carbon.2016.09.032

    15. [15]

      Xiao Y Q, Pang Y X, Yan Y X, Qian P, Zhao H T, Manickam S, Wu T, Pang C H. Synthesis and functionalization of graphene materials for biomedical applications: Recent advances, challenges, and perspectives[J]. Adv. Sci., 2023,10(9)e2205292. doi: 10.1002/advs.202205292

    16. [16]

      Vakili B, Karami-Darehnaranji M, Mirzaei E, Hosseini F, Nezafat N. Graphene oxide as novel vaccine adjuvant[J]. Int. Immunopharmacol., 2023,125111062. doi: 10.1016/j.intimp.2023.111062

    17. [17]

      Hummers W S, Offeman R E. Preparation of graphitic oxide[J]. J. Am. Chem. Soc., 1958,80(6)1339. doi: 10.1021/ja01539a017

    18. [18]

      Liu H H, Xu A, Feng Z J, Long D, Chen X Y, Lu M. pH-dependent fluorescent quenching of graphene oxide quantum dots: Towards hydroxyl[J]. Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater., 2020,260114627. doi: 10.1016/j.mseb.2020.114627

    19. [19]

      Marcano D C, Kosynkin D V, Berlin J M, Sinitskii A, Sun Z Z, Slesarev A, Alemany L B, Lu W, Tour J M. Improved synthesis of graphene oxide[J]. ACS Nano, 2010,4(8):4806-4014. doi: 10.1021/nn1006368

    20. [20]

      Yang Y X, Huo D Q, Wu H X, Wang X F, Yang J S, Bian M H, Ma Y, Hou C J. N, P-doped carbon quantum dots as a fluorescent sensing platform for carbendazim detection based on fluorescence resonance energy transfer[J]. Sens. Actuator B-Chem., 2018,274:296-303. doi: 10.1016/j.snb.2018.07.130

    21. [21]

      Liu Y J, Ying D Y, Cai Y X, Le X Y. Improved antioxidant activity and physicochemical properties of curcumin by adding ovalbumin and its structural characterization[J]. Food Hydrocolloids, 2017,72:304-311. doi: 10.1016/j.foodhyd.2017.06.007

    22. [22]

      Cui L, Ren X, Wang J, Sun M T. Synthesis of homogeneous carbon quantum dots by ultrafast dualbeam pulsed laser ablation for bioimaging[J]. Mater. Today Nano, 2020,12100091. doi: 10.1016/j.mtnano.2020.100091

    23. [23]

      Hafermann M J, Namdar R, Seibold G E, Lee R. Effect of intravenous ondansetron on qt interval prolongation in patients with cardiovascular disease and additional risk factors for torsades: a prospective, observational study[J]. Drug Healthc. Patient Saf., 2011,3:53-58.

    24. [24]

      Colby L A, Quenee L E, Zitzow L A. Considerations for infectious disease research studies using animals[J]. Comparative Med., 2017,67(3):222-231.

    25. [25]

      Tang S H, Huang Y Y, Zheng J. Salivary excretion of renal-clearable silver nanoparticles[J]. Angew. Chem. Int. Ed., 2020,59(45):19894-19898. doi: 10.1002/anie.202008416

    26. [26]

      Poon W, Zhang Y N, Ouyang B, Kingston B R, Wu J L Y, Wilhelm S, Chan W C W. Elimination pathways of nanoparticles[J]. ACS Nano, 2019,13(5):5785-5798. doi: 10.1021/acsnano.9b01383

    27. [27]

      LI P J, YAO F G. Effect of ginseng ling yangxin tang on blood biochemical and cardiac function indices in patients with chronic heart faliure and evaluation of the safety of drug administrstion[J]. Clinical Research, 2023,31(10):111-114.  

    28. [28]

      Boehm O, Zur B, Koch A, Tran N, Freyenhagen R, Hartmann M, Zacharowski K. Clinical chemistry reference database for Wistar rats and C57/Bl6 mice[J]. Biol. Chem., 2007,388(5):547-554. doi: 10.1515/BC.2007.061

    29. [29]

      Kurapati R, Mukherjee S P, Martín C, Bepete G, Vázquez E, Pénicaud A, Fadeel B, Bianco A. Degradation of single-layer and few-layer graphene by neutrophil myeloperoxidase[J]. Angew. Chem. Int. Ed., 2018,57(36):11722-11727. doi: 10.1002/anie.201806906

    30. [30]

      Zhao L, Seth A, Wibowo N, Zhao C X, Mitter N, Yu C, Middelberg A P. Nanoparticle vaccines[J]. Vaccine, 2014,32(3):327-337. doi: 10.1016/j.vaccine.2013.11.069

    31. [31]

      Habib A, Anjum K M, Iqbal R, Jaffar G, Ashraf Z, Khalid M S, Taj M U, Zainab S W, Umair M, Zohaib M, Khalid T. Vaccine adjuvants: Selection criteria, mechanism of action associated with immune responses and future directions[J]. Iran. J. Immunol., 2023,20(1):1-15.

    32. [32]

      Nguyen B, Tolia N H. Protein-based antigen presentation platforms for nanoparticle vaccines[J]. npj Vaccines, 2021,6(1)70.

    33. [33]

      Barinov A, Galgano A, Krenn G, Tanchot C, Vasseur F, Rocha B. CD4/CD8/dendritic cell complexes in the spleen: CD8+T cells can directly bind CD4+T cells and modulate their response[J]. PLoS One, 2017,12(7)e0180644.

    34. [34]

      Pondeljak N, Lugovic-mihic L. Stress-induced interaction of skin immune cells, hormones, and neurotransmitters[J]. Clin. Ther., 2020,42(5):757-770.

    35. [35]

      Kalinski P, Wieckowski E, Muthuswamy R, De Jong E. Generation of stable Th1/CTL-, Th2-, and Th17-inducing human dendritic cells//Naik S H. Dendritic Cell Protocols. 2nd ed. New York: Humana Press, 2010, 595: 117-133

    36. [36]

      Kilgore P B, Sha J, Andersson J A, Motin V L, Chopra A K. A new generation needle- and adjuvant-free trivalent plague vaccine utilizing adenovirus-5 nanoparticle platform[J]. npj Vaccines, 2021,6(1)21.

    37. [37]

      Lam J H, Baumgarth N. Toll-like receptor mediated inflammation directs B cells towards protective antiviral extrafollicular responses[J]. Nat. Commun., 2023,14(1)3979.

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    3. [3]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    4. [4]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    5. [5]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    6. [6]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    7. [7]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    8. [8]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    9. [9]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    10. [10]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    11. [11]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    12. [12]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    13. [13]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    14. [14]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    15. [15]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    16. [16]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    17. [17]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    18. [18]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    19. [19]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    20. [20]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

Metrics
  • PDF Downloads(0)
  • Abstract views(72)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return