Citation: Junying LI, Xinyan CHEN, Xihui DIAO, Muhammad Yaseen, Chao CHEN, Hao WANG, Chuansong QI, Wei LI. Chiral fluorescent sensor Tb3+@Cd-CP based on camphoric acid for the enantioselective recognition of R- and S-propylene glycol[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(12): 2497-2504. doi: 10.11862/CJIC.20240084 shu

Chiral fluorescent sensor Tb3+@Cd-CP based on camphoric acid for the enantioselective recognition of R- and S-propylene glycol

Figures(7)

  • Herein, a layered chiral coordination polymer, [Cd2(D-cam)2(2, 2'-bipy)2]n (Cd-CP), was synthesized using a solvothermal method with camphoric acid (D-H2cam), 2, 2'-bipyridine (2, 2'-bipy) and Cd2+, and Tb3+@Cd-CP was in-situ synthesized introducing Tb3+ ions. The fluorescence experiments revealed that compared to Cd-CP, Tb3+@Cd-CP exhibited ultra-high fluorescence performance. The luminescence sensing performance demonstrated that Tb3+@Cd-CP could distinguish R/S-propylene glycol (R/S-PG) by fluorescence responses, with fluorescence quenching constant of 5.3×103 and 2.0×103 L·mol-1 respectively and the enantioselectivity factor (α) of 2.65. Moreover, Tb3+@Cd-CP demonstrated limits of detection of 9.3 and 19.0 μmol·L-1 for R-PG and S-PG, respectively, and showed good reproducibility.
  • 加载中
    1. [1]

      Chen X M, Hu N, Wei H F, Wang H B. Chiral fluorescent recognition by naphthalimide dyes ⊂cucurbit[7]uril assembly[J]. J. Fluoresc., 2020,30:679-685. doi: 10.1007/s10895-020-02539-6

    2. [2]

      Chen A L, Zhong Y J, Yin X H, Li R J, Deng Q F, Yang R. A novel achiral fluorescent nanoprobe for the chiral recognition of cysteine enantiomers[J]. Sens. Actuator B-Chem., 2023,393134262. doi: 10.1016/j.snb.2023.134262

    3. [3]

      Niu X H, Yan S M, Chen J L, Li H X, Wang K J. Enantioselective recognition of L/D-amino acids in the chiral nanochannels of a metalorganic framework[J]. Electrochim. Acta, 2022,405139809. doi: 10.1016/j.electacta.2021.139809

    4. [4]

      Pemberton M A. , Kimber I[J]. Propylene glycol, skin sensitisation and allergic contact dermatitis: A scientific and regulatory conundrum. Regul. Toxicol. Pharmacol., 2023,138105341.

    5. [5]

      Shrirame B S, Varma A R, Sahoo S S, Gayen K, Maity S K. Technocommercial viability of glycerol valorization to 1, 2and 1, 3-propanediol using pinch technology[J]. Biomass Bioenerg., 2023,177106943. doi: 10.1016/j.biombioe.2023.106943

    6. [6]

      Tao Y M, Bu C Y, Zou L H, Hu Y L, Zheng Z J, Ouyang J. A comprehensive review on microbial production of 1, 2 propanediol: Micro organisms, metabolic pathways, and metabolic engineering[J]. Biotechnol. Biofuels, 2021,14216. doi: 10.1186/s13068-021-02067-w

    7. [7]

      Główka M, Krawczyk T. New trends and perspectives in production of 1, 2-propanediol[J]. ACS Sustain. Chem. Eng., 2023,11:7274-7287. doi: 10.1021/acssuschemeng.3c01018

    8. [8]

      Zhang H Q, Liu W K, Qin A L, Wang F F, Zhao L C, Zhang S, Li Y, Yang H. Helical twisting behaviour of new chiral dopants with (S)-1, 2propanediol units for nematic liquid crystals[J]. Liq. Cryst., 2010,37317324.

    9. [9]

      WANG G F, SUN S W, SONG S F, LÜ M. Synthesis of a Cd(Ⅱ)-based coordination polymer for luminescence detecting 2, 4, 6-trinitrophenol[J]. Chinese J. Inorg. Chem., 2024,39(12):2407-2414.

    10. [10]

      Wang M M, Xiong T Z, Chen B C, Hu J J, Wen H R, Liu S J. Solventand pH-stable Eu (Ⅲ)-based metal-organic framework with phosphateratio fluorescence sensing and significant proton conduction[J]. Inorg. Chem., 2023,62:21322-21328. doi: 10.1021/acs.inorgchem.3c03406

    11. [11]

      Zhou Z D, Xu Z L, Wang D, Jia L F, Zhao H Q, Yu B Y, Wang C C. Two bisligand-coordinated luminescent Zn (Ⅱ)-coordination polymers for sensing of ions and pesticides in aqueous solutions[J]. Chin. J. Struct. Chem., 2023,412209087.

    12. [12]

      Cui H L, Liu W, Xu X Y, Zhou J, Song X M, Chen X L. Synthesis and fluorescence sensing for nitro explosives and pesticides of two Cd-coordination polymers[J]. ACS Omega, 2024,8:39917-39927.

    13. [13]

      Zhang X P, Deng X C, Gao Z H, Cui G H. Two robust zinc (Ⅱ) coordination polymers as dual functional sensors for selective and sensitive detection of sulfamethoxazole antibiotic and ferric ion[J]. J. Mol. Struct., 2023,1297136950.

    14. [14]

      GAO L L, LI M X, DU Y E, CHEN Y Q. Synthesis and fluorescent sensing properties of two metal-organic coordination polymers based on 6-(3, 5-dicarboxylphenyl) nicotinic acid[J]. Chinese J. Inorg. Chem., 2020,36(12):2359-2366. doi: 10.11862/CJIC.2020.249

    15. [15]

      Ma H Y, Wu Q, Ma K X, Yang H, Li D C, Dou J M, Li Y W, Wang S N. An amide groups functionalized Cd MOF as multi responsive luminescent sensor for detecting Fe3+, Cr2O72- and OTC in water media[J]. J. Mol. Struct., 2023,1291136009. doi: 10.1016/j.molstruc.2023.136009

    16. [16]

      Hou T, Zhao C C, Bao S S, Zhai Z M, Zheng L M. Solvent modulation of the morphology of homochiral gadolinium coordination polymers and its impact on circularly polarized luminescence[J]. Dalton Trans., 2024,53:4291-4298. doi: 10.1039/D3DT03735E

    17. [17]

      Jia J G, Zhao C C, Wei Y F, Zhai Z M, Bao S S, Jacobson A J, Ma J, Zheng L M. Macroscopic helical assembly of one-dimensional coordination polymers: helicity inversion triggered by solvent isomerism[J]. J. Am. Chem. Soc., 2023,145:23948-23962. doi: 10.1021/jacs.3c05552

    18. [18]

      Song I H, You L Y, Chen K, Lee W J, Mei J G. Chiroptical switching of electrochromic polymer thin films[J]. Adv. Mater., 2024,362307057. doi: 10.1002/adma.202307057

    19. [19]

      Jeon J, Elbert J, Chung C H, Chae J, Su X. Chiral metallopolymers for redox-mediated enantioselective interactions[J]. Adv. Funct. Mater., 2023,332301545. doi: 10.1002/adfm.202301545

    20. [20]

      Xie M H, Cheng F, Wang Y, Yao B X, Wang W, Guan R F, Yang X L. QCM based enantioselective discrimination of enantiomers by a pair of serine derived homochiral coordination polymers[J]. Biosens. Bioelectron., 2019,144111667. doi: 10.1016/j.bios.2019.111667

    21. [21]

      Thoonen S, Tay H M, Hua C. A chiral binaphthyl-based coordination polymer as an enantioselective fluorescence sensor[J]. Chem. Commun., 2022,58:4512-4515. doi: 10.1039/D1CC06872E

    22. [22]

      ZHANG C, HE Z Z, WANG W L, GAO W J, ZHANG F F, WANG X. Design and synthesis of MOF-1 and Tb@MOF-1 as fluorescent probes for recognizing trace amounts of Cr2O72- and S2O82- ions[J]. Chinese J. Inorg. Chem., 2023,39(9):1832-1840.

    23. [23]

      Gao W, Wei H, Wang C L, Liu J P, Zhang X M. Multifunctional ZnLn (Ln=Eu and Tb) heterometallic metal organic frameworks with highly efficient I2 capture, dye adsorption, luminescence sensing and white-light emission[J]. Dalton Trans., 2021,50:11619-11630.

    24. [24]

      Chen S M, Lian T T. Structural diversity of homochiral cadmium camphorates with 2, 2'bipyridine[J]. Solid State Sci., 2012,1410551059.

    25. [25]

      Jiang H, Yang K W, Zhao X X, Zhang W Q, Liu Y, Jiang J W, Cui Y. Highly stable Zr (Ⅳ)-based metal-organic frameworks for chiral separation in reversed-phase liquid chromatography[J]. J. Am. Chem. Soc., 2021,143:390-398.

    26. [26]

      Wang L B, W J J, Yue E L, Li J F, Bai C, Tang L, Wang X, Hou X Y, Zhang Y Q. Fluorescence sensing and anti-counterfeiting application based a heterometallic Cd (Ⅱ)-Na (Ⅰ)-MOF[J]. J. Solid State Chem., 2022,309123026.

    27. [27]

      Li Y J, Wang J Y, Huang Z J, Qian C, Tian Y H, Duan Y X. An Eu doped Zr metal organic framework for simultaneous detection and removal of antibiotic tetracycline[J]. J. Environ. Chem. Eng., 2021,9106012.

    28. [28]

      Zhang X M, Bai Y M, Ai L L, Wu F H, Shan W L, Kang Y S, Luo L, Chen K, Xu F. A chiral metal-organic framework prepared on largescale for sensitive and enantioselective fluorescence recognition[J]. Molecules, 2023,284593.

    29. [29]

      Zhang Y F, Wang H Z, Yu H, Sun X X. Chiral fluorescent sensor based on H8-BINOL for the high enantioselective recognition of Dand L-phenylalanine[J]. RSC Adv., 2022,12:11967-11973.

    30. [30]

      Ucar A, Findik M, Bingol H, Guler E, Ozcan E. Organometallic chiral Schiff base for enantio-selective fluorescent recognition of methionine[J]. Chem. Pap., 2017,71:1855-1862.

    31. [31]

      Jia Y J, Li D C, Wu N, Su S, Qie S W, Hu M. Detection of salbutamol and enantioselective sensing of L/D-lysine based on a cadmiumbased coordination polymer[J]. New J. Chem., 2023,47:674-680.

    32. [32]

      Shao J J, Ni J L, Liang Y, Li G J, Chen L Z, Wang F M. Luminescent MOFs for selective sensing of Ag+and other ions (Fe (Ⅲ) and Cr (Ⅵ)) in aqueous solution[J]. CrystEngComm, 2022,24:2479-2484.

    33. [33]

      Ding Y Y, Lu Y T, Yu K L, Wang S, Zhao D, Chen B L. MOF-nanocomposite mixed-matrix membrane for dual-luminescence ratiometric temperature sensing[J]. Adv. Opt. Mater., 2021,92100945.

    34. [34]

      Neese F. The ORCA program system[J]. Wiley Interdiscip. Rev.-Comput. Mol. Sci., 2012,2:73-78.

    35. [35]

      Perdew J P, Burke K, Wang Y. Generalized gradient approximation for the exchangecorrelation hole of a manyelectron system[J]. Phys. Rev. B, 1996,5416533.

    36. [36]

      Grimme S, Antony J, Ehrlich S, Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT D) for the 94 elements H Pu[J]. J. Chem. Phys., 2010,132154104.

  • 加载中
    1. [1]

      Dongdong YANGJianhua XUEYuanyu YANGMeixia WUYujia BAIZongxuan WANGQi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266

    2. [2]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    3. [3]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    4. [4]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    5. [5]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    6. [6]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    7. [7]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    8. [8]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    9. [9]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    10. [10]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    11. [11]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    12. [12]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    13. [13]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    14. [14]

      Jun GuoZhenbang ZhuangWanqiang LiuGang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803

    15. [15]

      Long TANGYaxin BIANLuyuan CHENXiangyang HOUXiao WANGJijiang WANG . Syntheses, structures, and properties of three coordination polymers based on 5-ethylpyridine-2,3-dicarboxylic acid and N-containing ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1975-1985. doi: 10.11862/CJIC.20240180

    16. [16]

      Yang Yang Jing-Li Luo Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269

    17. [17]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    18. [18]

      Xiaoxiao HuangZhi-Long HeYangpeng ChenLei LiZhenyu YangChunyang ZhaiMingshan Zhu . Novel P-doping-tuned Pd nanoflowers/S,N-GQDs photo-electrocatalyst for high-efficient ethylene glycol oxidation. Chinese Chemical Letters, 2024, 35(6): 109271-. doi: 10.1016/j.cclet.2023.109271

    19. [19]

      Xiaoman DangZhiying WuTangxin XiaoZhouyu WangLeyong Wang . Highly robust supramolecular polymer networks crosslinked by metallacycles. Chinese Chemical Letters, 2024, 35(12): 110208-. doi: 10.1016/j.cclet.2024.110208

    20. [20]

      Mengjun SunZhi WangJvhui JiangXiaobing WangChuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393

Metrics
  • PDF Downloads(0)
  • Abstract views(41)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return