Citation: Yingchun ZHANG, Yiwei SHI, Ruijie YANG, Xin WANG, Zhiguo SONG, Min WANG. Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078 shu

Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction

Figures(11)

  • Two supramolecular complexes of [Mn2(2, 2′-bipy)4(H2O)Cl3](L1)·6H2O (1) and [Mn(2, 2′-bipy)2(H2O)Cl](L2)·3H2O (2) (L1-=p-methylbenzenesulfonate anion, L2-=m-nitrobenzenesulfonate anion, 2, 2′-bipy=2, 2′-bipyridine) were synthesized by solvothermal method. The complexes were characterized by single-crystal X-ray diffraction, infrared spectroscopy, thermogravimetric analysis, and nitrogen adsorption-desorption test. Using the Mannich reaction as a probe, the catalytic properties of the two complexes were studied, and the effects of the structure of the complexes on their catalytic properties were analyzed by comparing the results of scanning electron microscopy and powder X-ray diffraction. Finally, density functional theory was used to predict the active sites of the complexes, and X-ray photoelectron spectroscopy was used to prove the activation of the active sites. Then the mechanism of Mannich reaction catalyzed by the complexes was clarified.
  • 加载中
    1. [1]

      Pu M X, Guo H Y, Quan Z S, Li X T, Shen Q K. Application of the Mannich reaction in the structural modification of natural products[J]. J. Enzym. Inhib. Med. Chem., 2023,38(1):1-18.

    2. [2]

      Kulkarni P. Sulfanilic acid catalysed one-pot three-component Mannich reaction for synthesis of β-amino ketones[J]. Vietnam J. Chem., 2020,58(5):675-687. doi: 10.1002/vjch.202000090

    3. [3]

      Rani P, Prakash M, Samanta S. Organobase-catalyzed Mannich reaction of cyclic N-sulfonyl imines and 1, 2-diketones: A sustainable approach to 4-(3-arylquinoxalin-2-ylmethyl) sufamidates[J]. Tetrahedron Lett., 2023,122154490. doi: 10.1016/j.tetlet.2023.154490

    4. [4]

      Mohurle S, Pasuparthy S D, Talamarla D, Kali V, Maiti B. [BCMIM][Cl] ionic liquid catalyzed diastereoselective synthesis of β-amino ketones via facile, one-pot, multicomponent Mannich reaction under solvent-free condition[J]. J. Heterocycl. Chem., 2023,60(9):1545-1557. doi: 10.1002/jhet.4698

    5. [5]

      Azizi N, Edrisi M. Deep eutectic solvent immobilized on SBA-15 as a novel separable catalyst for one-pot three-component Mannich reaction[J]. Microporous Mesoporous Mat., 2017,240(11):130-136.

    6. [6]

      Kalhor H R, Piraman Z, Fathali Y. Hen egg white lysozyme encapsulated in ZIF-8 for performing promiscuous enzymatic Mannich reaction[J]. iScience, 2023,26(10):1-21.

    7. [7]

      Yang Z N, He H K, Tian R, Wu R R, Hu S, Wu Y, Zhou H. A zinc/ PyBisulidine catalyzed asymmetric Mannich reaction of N-tosyl imines with 3-acyloxy-2-oxindoles[J]. Org. Biomol. Chem., 2021,19(34):7460-7469. doi: 10.1039/D1OB01328A

    8. [8]

      Mote N R, Chikkali S H. Hydrogen-bonding-assisted supramolecular metal catalysis[J]. Chem. Asian J., 2018,13(23):3623-3646. doi: 10.1002/asia.201801302

    9. [9]

      Deng J H, Luo J, Mao Y L, Lai S, Gong Y N, Zhong D C, Lu T B. π-π stacking interactions: Non-negligible forces for stabilizing porous supramolecular frameworks[J]. Sci. Adv., 2020,6(2)eaax9976. doi: 10.1126/sciadv.aax9976

    10. [10]

      Wang Y J, Wang M Y, Li Y B, Liu Q. Homogeneous manganese- catalyzed hydrogenation and dehydrogenation reactions[J]. Chem, 2021,7(5):1180-1223. doi: 10.1016/j.chempr.2020.11.013

    11. [11]

      Liu C G, Wang M Y, Liu S H, Wang Y J, Peng Y, Lan Y, Liu Q. Manganese-catalyzed asymmetric hydrogenation of quinolines enabled by π-π interaction[J]. Angew. Chem. Int. Ed., 2021,60(10):5108-5113. doi: 10.1002/anie.202013540

    12. [12]

      Zhang D P, Lan W L, Zhou Z, Yang L, Liu Q Y, Bian Y Z, Jiang J Z. Manganese(Ⅲ) porphyrin-based magnetic materials[J]. Top. Curr. Chem., 2019,377(18):1-43.

    13. [13]

      Tao P, Liu S J, Wong W Y. Phosphorescent manganese(Ⅱ) complexes and their emerging applications[J]. Adv. Opt. Mater., 2020,8(20)2000985. doi: 10.1002/adom.202000985

    14. [14]

      QI J Y, DANG X Y, ZHANG Y C, SONG Z G, WANG M. Study on the structure and catalytic property of two copper benzenesulfonate complexes[J]. Chemical Research and Application, 2022,34(11):2610-2618. doi: 10.3969/j.issn.1004-1656.2022.11.003

    15. [15]

      Lin R B, Chen B. Hydrogen-bonded organic frameworks: Chemistry and functions[J]. Chem, 2022,8(8):2114-2135. doi: 10.1016/j.chempr.2022.06.015

    16. [16]

      Bruker. SMART (Version 5.628), SAINT (Version 6.45), and SADABS. Bruker AXS Inc. : Madison, WI, 2001.

    17. [17]

      Sheldrick G M. SHELXL-97, Program for the refinement of crystal structures. University of Göttingen, Germany, 1997.

    18. [18]

      Wang C P, Wang Z, Mao S J, Chen Z R, Wang Y. Coordination environment of active sites and their effect on catalytic performance of heterogeneous catalysts[J]. Chin. J. Catal., 2022,43(4):928-955. doi: 10.1016/S1872-2067(21)63924-4

    19. [19]

      Xie C, Yan D F, Li H, Du S Q, Chen W, Wang Y Y, Zou Y Q, Chen R, Wang S Y. Defect chemistry in heterogeneous catalysis: Recognition, understanding, and utilization[J]. ACS Catal., 2020,10(19):11082-11098. doi: 10.1021/acscatal.0c03034

    20. [20]

      Han B, Wang H L, Wang C M, Wu H, Zhou W, Chen B L, Jiang J Z. Postsynthetic metalation of a robust hydrogen-bonded organic framework for heterogeneous catalysis[J]. J. Am. Chem. Soc., 2019,141(22):8737-8740. doi: 10.1021/jacs.9b03766

    21. [21]

      XIA X, WANG S, YANG X Q, FAN R, WEI R Z, LIU Z, TANG Q. Synthesis, crystal structure and properties of zinc complex based on 2, 5-bis(trifluoromethyl) terephthalic acid ligand[J]. Chinese J. Inorg. Chem., 2021,37(12):2133-2140. doi: 10.11862/CJIC.2021.254

    22. [22]

      Vassileva P, Krastev V, Lakov L, Peshev O. XPS determination of the binding energies of phosphorus and nitrogen in phosphazenes[J]. J. Mater. Sci., 2004,39(9):3201-3202. doi: 10.1023/B:JMSC.0000025859.82714.4a

    23. [23]

      Neuvonen H, Neuvonen K, Koch A, Kleinpeter E, Pasanen P. Electron-withdrawing substituents decrease the electrophilicity of the carbonyl carbon. An investigation with the aid of 13C NMR chemical shifts, ν(C=O) frequency values, charge densities, and isodesmic reactions to interprete substituent effects on reactivity[J]. J. Org. Chem., 2002,67(20):6995-7003. doi: 10.1021/jo020121c

    24. [24]

      Rakhtshah J, Ghaderi H, Yaghoobi F, Baghery S, Shaabani B. Synthesis of α-aminoalkyl naphthol derivatives in the presence of nickel complexes immobilized on multi-wall carbon nanotubes[J]. Mater. Chem. Phys., 2020,239121985. doi: 10.1016/j.matchemphys.2019.121985

  • 加载中
    1. [1]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    2. [2]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    3. [3]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    4. [4]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    5. [5]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    6. [6]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    7. [7]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    8. [8]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    9. [9]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    10. [10]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    11. [11]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    12. [12]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    13. [13]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    14. [14]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    15. [15]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    16. [16]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    17. [17]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    18. [18]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    19. [19]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    20. [20]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

Metrics
  • PDF Downloads(1)
  • Abstract views(166)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return