Citation: Zhuo WANG, Junshan ZHANG, Shaoyan YANG, Lingyan ZHOU, Yedi LI, Yuanpei LAN. Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067 shu

Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition

  • Corresponding author: Yuanpei LAN, yplan@gzu.edu.cn
  • Received Date: 27 February 2024
    Revised Date: 11 July 2024

Figures(11)

  • CeCO3OH-rGO (reduced graphene oxide) was prepared by a one-step hydrothermal method, and CeO2-rGO composites were prepared by roasting under argon (Ar) atmosphere. The phase composition, microstructure, vacancy defects, and photoelectrochemical properties of the composites were studied by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, UV visible diffuse reflectance spectroscopy (UV-Vis DRS), etc. The photocatalytic performance of the composites with different GO (graphene oxide) and NH4HCO3 addition amounts respectively were comparatively studied. It was found that the CeO2-10rGO-15 with GO and NH4HCO3 addition amounts of 10 mg and 15 mmol respectively had the narrowest band-gap width (3.17 eV), and the photocatalytic degradation ratio of methylene blue (MB) could reach 80.66%. It is beneficial to the formation vacancy defect of CeO2 and the separation of photogenic carriers for rGO loading suitably, thus promoting photocatalytic performance.
  • 加载中
    1. [1]

      GAO M, ZHANG T Q, LI J J, HU J Q, JIN M Y, ZHAO Y, WANG H Y, XUE C G. Preparation and multiple-dye adsorption of magnetic chitosan/Fe3O4/graphene oxide adsorbent[J]. Chinese J. Inorg. Chem., 2023,39(4):723-734.

    2. [2]

      LU X Y, ZHANG M L, REN Y X, WANG J J, YANG X G. Adsorption, photocatalytic degradation, and their mechanisms of methylene blue on three-dimensional Cu-MOF[J]. Chinese J. Inorg. Chem., 2023,39(10):1991-2002. doi: 10.11862/CJIC.2023.161

    3. [3]

      Lan Y P, Sohn H Y. Effect of oxygen vacancies and phases on catalytic properties of hydrogen-treated nanoceria particles[J]. Mater. Res. Express, 2018,5(3)035501. doi: 10.1088/2053-1591/aaaff4

    4. [4]

      Lan Y P, Sohn H Y. Nanoceria synthesis in molten KOH-NaOH mixture: characterization and oxygen vacancy formation[J]. Ceram. Int., 2018,44(4):3847-3855. doi: 10.1016/j.ceramint.2017.11.172

    5. [5]

      Alberoni C, Barroso-Martín I, Infantes-Molina A, Rodríguez-Castellón E, Talon A, Zhao H G, You S J, Vomiero A, Moretti E. Ceria doping boosts methylene blue photodegradation in titania nanostructures[J]. Mat. Chem. Front., 2021,5(11):4138-4152. doi: 10.1039/D1QM00068C

    6. [6]

      Wetchakun N, Chaiwichain S, Inceesungvorn B, Pingmuang K, Phanichphant S, Minett A I, Chen J. BiVO4/CeO2 nanocomposites with high visible‑light‑induced photocatalytic activity[J]. ACS Appl. Mater. Interfaces, 2012,4(7):3718-3723. doi: 10.1021/am300812n

    7. [7]

      Lu X H, Xie S L, Zhai T, Zhao Y F, Zhang P, Zhang Y L, Tong Y X. Monodisperse CeO2/CdS heterostructured spheres: One-pot synthesis and enhanced photocatalytic hydrogen activity[J]. RSC Adv., 2011,1(7):1207-1210.

    8. [8]

      You D T, Pan B, Jiang F, Zhou Y E, Su W Y. CdS nanoparticles/CeO2 nanorods composite with high-efficiency visible-light-driven photocatalytic activity[J]. Appl. Surf. Sci., 2016,363:154-160. doi: 10.1016/j.apsusc.2015.12.021

    9. [9]

      Chen C F, Li M R, Jia Y S, Chong R F, Xu L P, Liu X. Surface defect-engineered silver silicate/ceria pn heterojunctions with a flower-like structure for boosting visible light photocatalysis with mechanistic insight[J]. J. Colloid Interface Sci., 2020,564:442-453. doi: 10.1016/j.jcis.2019.12.128

    10. [10]

      Xu T H, Lei X F, Gu G Q, Zou R J, Wu Q. Facile synthesis of CeO2-graphene oxide composites with enhanced visible-light photocatalytic performance[J]. Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater., 2019,244:49-55. doi: 10.1016/j.mseb.2019.04.023

    11. [11]

      Bai R, Zhao Y P, Lu C Y, Meng Y, Gao W W, Wang Y, Dang R, Mu M, Wang J X, Jiao Y R. Sonochemical synthesis and electrochemical performance of reduced graphene oxide/cerium dioxide nanocomposites[J]. J. Chem. Res., 2023,47(2)17475198231158745.

    12. [12]

      Din M I, Khalid R, Najeeb J, Hussain Z. Fundamentals and photocatalysis of methylene blue dye using various nanocatalytic assemblies-A critical review[J]. J. Clean Prod., 2021,298126567. doi: 10.1016/j.jclepro.2021.126567

    13. [13]

      Channei D D, Nakaruk A, Phanichphant S. Influence of graphene oxide on photocatalytic enhancement of cerium dioxide[J]. Mater. Lett., 2017,209:43-47. doi: 10.1016/j.matlet.2017.07.109

    14. [14]

      Ahmed S H, Bakiro M, Aljasmi F I A, Albreiki A M O, Bayane S, Alzamly A. Investigation of the band gap and photocatalytic properties of CeO2/rGO composites[J]. Mol. Catal., 2020,486110874. doi: 10.1016/j.mcat.2020.110874

    15. [15]

      Kumar S, Kumar A. Enhanced photocatalytic activity of rGO-CeO2 nanocomposites driven by sunlight[J]. Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater., 2017,223:98-108. doi: 10.1016/j.mseb.2017.06.006

    16. [16]

      Xia X W, Li J Q, Chen C Y, Lan Y P, Mao X S, Chu Z Y, Ning D Y, Zhang J S, Liu F Y. Collaborative influence of morphology tuning and RE (La, Y, and Sm) doping on photocatalytic performance of nanoceria[J]. Environ. Sci. Pollut. Res., 2022,29(59):88866-88881. doi: 10.1007/s11356-022-21787-6

    17. [17]

      Lan Y P, Xia X W, Li J Q, Mao X S, Chen C Y, Ning D Y, Chu Z Y, Zhang J S, Liu F Y. Insight into the contributions of surface oxygen vacancies on the promoted photocatalytic property of nanoceria[J]. Nanomaterials, 2021,11(5)1168.

    18. [18]

      Verma R, Samdarshi S K. In situ decorated optimized CeO2 on reduced graphene oxide with enhanced adsorptivity and visible light photocatalytic stability and reusability[J]. J. Phys. Chem. C, 2016,120(39):22281-22290. doi: 10.1021/acs.jpcc.6b04493

    19. [19]

      Huang W, Tan Y J, Li D W, Du H L, Hu X W, Li G Z, Kuang Y Q, Li M, Guo D C. Improved photo-luminescence by co-doped lithium in the phosphor system CeO2: Eu3+[J]. J. Lumines., 2019,206:432-439. doi: 10.1016/j.jlumin.2018.10.072

    20. [20]

      Farah S, Farkas A, Madarász J, László K. Comparison of thermally and chemically reduced graphene oxides by thermal analysis and Raman spectroscopy[J]. J. Therm. Anal. Calorim., 2020,142(1):331-337.

    21. [21]

      Ning D Y, Zhang J S, Murali A, Lan Y P, Chen C Y, Yang S Y, Zhang W, Li J Q. Advancements in organic pollutant remediation: The role of nitrogen-doped rGO-CeO2 in photocatalytic efficiency enhancement[J]. Colloids Surf. A-Physicochem. Eng. Asp., 2024,685133282.

    22. [22]

      Zhan S J, Huang H T, He C, Xiong Y, Li P, Tian S H. Controllable synthesis of substitutional and interstitial nitrogen-doped ceria: The effects of doping sites on enhanced catalytic ozonation of organic pollutants[J]. Appl. Catal. B-Environ., 2023,321122040.

    23. [23]

      Wang F, Li J Q, Chen C Y, Lan Y P, Sohn H Y, Murali A, Zhang W, Zhang J S, Wang Q, Liu L. Enhancement effects of surface and bulk oxygen vacancies on the photocatalytic properties of ceria[J]. Mol. Catal., 2023,549113507.

    24. [24]

      Jiang L H, Yao M G, Liu B, Li Q J, Liu R, Lv H, Lu S C, Gong C, Zou B, Cui T. Controlled synthesis of CeO2/graphene nanocomposites with highly enhanced optical and catalytic properties[J]. J. Phys. Chem. C, 2012,116(21):11741-11745.

    25. [25]

      Men X J, Chen H B, Chang K W, Fang X F, Wu C F, Qin W P, Yin S Y. Three-dimensional free-standing ZnO/graphene composite foam for photocurrent generation and photocatalytic activity[J]. Appl. Catal. B-Environ., 2016,187:367-374.

    26. [26]

      Wang F, Zeng F S, Yu Z Y, Chen C Y, Huang X L, Zhang W, Lan Y P, Li J Q. A comparative study about the influence of nitrogen doping and oxygen vacancies on the photocatalytic performance of ceria[J]. Surf. Interfaces, 2024,46103889.

    27. [27]

      Zhang J S, Mao X S, Lan Y P, Li J Q, Chen C Y, Yang J, Zhang W, Murali A, Liu L, Wang Q. Doping rare earth cations with an additional chemical reduction synergistically weakened the photocatalytic performance of ceria[J]. Environ. Sci. Pollut. Res., 2023,30(17):51356-51367.

    28. [28]

      Liu B S, Wu H, Parkin I P. New insights into the fundamental principle of semiconductor photocatalysis[J]. ACS Omega, 2020,5(24):14847-14856.

    29. [29]

      Wang Y L, Zhang W, Wang Z H, Cao Y M, Feng J M, Wang Z L, Ma Y. Fabrication of TiO2 (B)/anatase heterophase junctions in nanowires via a surface-preferred phase transformation process for enhanced photocatalytic activity[J]. Chin. J. Catal., 2018,39(9):1500-1510.

    30. [30]

      Lu K Q, Chen Y, Xin X, Xu Y J. Rational utilization of highly conductive, commercial Elicarb graphene to advance the graphene-semiconductor composite photocatalysis[J]. Appl. Catal. B-Environ., 2018,224:424-432.

    31. [31]

      Ji Z Y, Shen X P, Li M Z, Zhou H, Zhu G X, Chen K M. Synthesis of reduced graphene oxide/CeO2 nanocomposites and their photocatalytic properties[J]. Nanotechnology, 2013,24(11)115603.

    32. [32]

      Fauzi A A, Jalil A A, Hassan N S, Aziz F F A, Azami M S, Hussain I, Saravanan R, Vo D V N. A critical review on relationship of CeO2-based photocatalyst towards mechanistic degradation of organic pollutant[J]. Chemosphere, 2022,286131651.

    33. [33]

      Bhargava R, Shah J, Khan S, Kotnala R K. Hydroelectric cell based on a cerium oxide-decorated reduced graphene oxide (CeO2-rG) nanocomposite generates green electricity by room-temperature water splitting[J]. Energy Fuels, 2020,34(10):13067-13078.

    34. [34]

      Mao X S, Xia X W, Li J Q, Chen C Y, Gu X Y, Li S, Lan Y P. Self-assembly of structured CeCO3OH and its decomposition in H2 for a novel tactic to obtain CeO2-x with excellent photocatalytic property[J]. J. Alloy. Compd., 2021,870159424.

    35. [35]

      Guo J J, Zhu S M, Chen Z X, Li Y, Yu Z Y, Liu Q L, Li J B, Feng C L, Zhang D. Sonochemical synthesis of TiO2 nanoparticles on graphene for use as photocatalyst[J]. Ultrason. Sonochem., 2011,18(5):1082-1090.

    36. [36]

      Yang J D, Xie N, Zhang J N, Fan W J, Huang Y C, Tong Y X. Defect engineering enhances the charge separation of CeO2 nanorods toward photocatalytic methyl blue oxidation[J]. Nanomaterials, 2020,10(11)2307.

  • 加载中
    1. [1]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    2. [2]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    3. [3]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    4. [4]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    5. [5]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    6. [6]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    7. [7]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    8. [8]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    9. [9]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    10. [10]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    11. [11]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    12. [12]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    13. [13]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    14. [14]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    15. [15]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    16. [16]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    17. [17]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    18. [18]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    19. [19]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    20. [20]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

Metrics
  • PDF Downloads(0)
  • Abstract views(37)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return