Citation: Xiaofei NIU, Ke WANG, Fengyan SONG, Shuyan YU. Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057 shu

Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-

Figures(5)

  • In this study, parallelogram-like macrocyclic supramolecular metallacycles [Pd6(bpy)6(L1)4](PF6)8 (1a) and [Pd6(bpy)6(L2)4](PF6)8 (2a), where HL1=1-(1H-pyrazole-4-yl)-4-(4-pyridyl)benzene, HL2=9-(1H-pyrazole-4-yl)-10-(4-pyridyl)anthracene, and bpy=2, 2'-bipyridine, are synthesized by reacting aryl pyrazole pyridine ligands with dipalla-dium corners in aqueous solutions via metal-directed hierarchical self-assembly. The structures of the supramolecular Pd parallelograms are confirmed through single-crystal X-ray diffraction. Notably, the two parallelogram metallacycles can be used as"turn-on"fluorescence sensors to detect HSO3- through a disassembly mechanism. In addition, the 1a-based sensor shows selective detection of HSO3- without interference from other anions. The detection limit was as low as 0.131 μmol·L-1. Furthermore, complex 1a presented the semiquantitative visual detection ability for HSO3- in the test trip mode via fluorescence changes.
  • 加载中
    1. [1]

      Sun Y Q, Liu J, Zhang J Y, Yang T, Guo W. Fluorescent probe for biological gas SO2 derivatives bisulfite and sulfite[J]. Chem. Commun., 2013,49(26):2637-2639. doi: 10.1039/c3cc39161b

    2. [2]

      ZHU G Y. Progress in monitoring technology for sulfur dioxide in the atmosphere[J]. Chin. J. Anal Chem., 1976(3):224-234.  

    3. [3]

      Wang K N, Zhu Y L, Xing M M, Cao D X, Guan R F, Zhao S F, Liu Z Q, Mao Z W. Two-photon fluorescence probes for mitochondria imaging and detection of sulfite/bisulfite in living cells[J]. Sens. Actuator BChem., 2019,295:215-222. doi: 10.1016/j.snb.2019.05.077

    4. [4]

      Meng Z Q, Yang Z H, Li J L, Zhang Q X. The vasorelaxant effect and its mechanisms of sodium bisulfite as a sulfur dioxide donor[J]. Chemosphere, 2012,89(5):579-584. doi: 10.1016/j.chemosphere.2012.05.056

    5. [5]

      Chan J, Dodani S C, Chang C J. Reaction-based small-molecule fluorescent probes for chemoselective bioimaging[J]. Nat. Chem., 2012,4:973-984. doi: 10.1038/nchem.1500

    6. [6]

      Li J, Gao Y, Guo H R, Li X K, Tang H Y, Li J, Guo Y. A novel colorimetric and ratiometric fluorescent probe for selective detection of bisulfite in real samples and living cells[J]. Dyes Pigment, 2019,263:285-290.

    7. [7]

      Deng C C, Xu Z Y, Sun Z, Xie J H, Luo H Q, Li N B. One-step synthesis of aldehyde-functionalized dual-emissive carbon dots for ratiometric fluorescence detection of bisulfite in food samples[J]. Food Chem, 2023,405134961. doi: 10.1016/j.foodchem.2022.134961

    8. [8]

      Chao J B, Wang H J, Zhang Y B, Yin C X, Huo F J, Sun J Y, Zhao M G. A novel pyrene-based dual multifunctional fluorescent probe for differential sensing of pH and HSO3- and their bioimaging in live cells[J]. New. J. Chem, 2018,42(5):3322-3333. doi: 10.1039/C7NJ03903D

    9. [9]

      Guo L E, Zhang J F, Liu X Y, Zhang L M, Zhang H L, Chen J H, Xie X G, Zhou Y, Luo K, Yoon J. Phosphate ion targeted colorimetric and fluorescent probe and its use to monitor endogeneous phosphate ion in a hemichannel-closed cell[J]. Anal. Chem., 2015,87:1196-1201. doi: 10.1021/ac503818p

    10. [10]

      Zhang H Y, Huang Z J, Feng G Q. Colorimetric and ratiometric fluorescent detection of bisulfite by a new HBT-hemicyanine hybrid[J]. Anal. Chim. Acta, 2016,920:72-79. doi: 10.1016/j.aca.2016.03.027

    11. [11]

      Wu W L, Ma H L, Huang M F, Miao J Y, Zhao B X. Mitochondriatargeted ratiometric fluorescent probe based on FRET for bisulfite[J]. Sens. Actuator B-Chem, 2017,241:239-244. doi: 10.1016/j.snb.2016.10.028

    12. [12]

      Liu Y, Wu L Q, Dai Y X, Li Y P, Qi S L, Du J S, Yang Q B, Xu H, Li Y X. A novel fluorescent probe based on a triphenylamine derivative for the detection of HSO 3with high sensitivity and selectivity[J]. Anal. Methods, 2021,13(33):3667-3675. doi: 10.1039/D1AY00800E

    13. [13]

      LI F, TANG Y H, GUO R, LIN W Y. Development of highly sensitive mitochondrial targeted nearinfrared sulfur dioxide fluorescent probes and imaging studies in cells and mice[J]. Chin. J. Org Chem, 2021,41(3):1108-1116.  

    14. [14]

      Shi Q, Shen L Y, Xu H, Wang Z Y, Yang X J, Huang Y L, Redshaw C, Zhang Q L. A 1-hydroxy-2, 4-diformylnaphthalene-based fluorescent probe and its detection of sulfites/bisulfite[J]. Molecules, 2021,263064. doi: 10.3390/molecules26113064

    15. [15]

      Tamima U, Singha S, Kim H R, Reo Y J, Jun Y W, Das A, Ahn K H. A benzocoumarin based two-photon fluorescent probe for ratiometric detection of bisulfite[J]. Sens. Actuator B-Chem, 2018,277:576-583. doi: 10.1016/j.snb.2018.09.052

    16. [16]

      Han Y Y, Huang Y, Lin Q W, Tang L Y, Yang G Y, Xin H T, Zhao S F, Guan R F, Wang K N, Cao D X. Bifunctional fluorescent probe for the recognition of hydrazine and bisulfite in lipid droplets[J]. Sens. Actuator B-Chem., 2023,393134181. doi: 10.1016/j.snb.2023.134181

    17. [17]

      Wang H, Wu X M, Yang S X, Tian H Y, Liu Y G, Sun B G. A dualsite fluorescent probe for separate detection of hydrogen sulfide and bisulfite[J]. Dyes Pigment., 2019,160:757-764. doi: 10.1016/j.dyepig.2018.09.020

    18. [18]

      Yang W C, Li S Y, Ni S N, Liu G Z. Advances in FRET-based biosensors from donor-acceptor design to applications[J]. Aggregate, 2023,5(2)e460.

    19. [19]

      WANG C, YANG M, DENG X Y. A benzimidazole based fluorescence enhanced probe for detecting bisulfite and its practical application[J]. Chinese J. Inorg. Chem, 2020,36(4):762-768.  

    20. [20]

      Ma L, Haynes C J E, Grommet A B, Walczak A, Parkins C C, Doherty C M, Longley L, Tron A, Stefankiewicz A R, Bennett T D, Nitschke J R. Coordination cages as permanently porous ionic liquids[J]. Nat. Chem., 2020,12:270-275. doi: 10.1038/s41557-020-0419-2

    21. [21]

      Li Y C, Li X Z, Li L L, Xiao B, Wu J G, Li H C, Li D Y, He C. Phenoxazine-based supramolecular tetrahedron as biomimetic lectin for glucosamine recognition[J]. Chin. Chem. Lett., 2021,32(2):735-739. doi: 10.1016/j.cclet.2020.07.028

    22. [22]

      Woods C Z, Wu H T, Ngai C, Camara B D, Julian R R, Hooley R J. Modifying the internal substituents of self-assembled cages controls their molecular recognition and optical properties[J]. Dalton Trans., 2022,51:10920-10929. doi: 10.1039/D2DT01451C

    23. [23]

      Begato F, Licini G, Zonta C. Programmed guest confinement via hierarchical cage to cage transformations[J]. Chem. Sci., 2023,14(30):8147-8151. doi: 10.1039/D3SC01368E

    24. [24]

      Zhang D W, Ronson T K, Zou Y Q, Nitschke J R. Metal-organic cages for molecular separations[J]. Nat. Rev. Chem., 2021,5:168-182. doi: 10.1038/s41570-020-00246-1

    25. [25]

      Hou Y J, Wu K, Wei Z W, Li K, Lu Y L, Zhu C Y, Wang J S, Pan M, Jiang J J, Li G Q, Su C Y. Design and enantioresolution of homochiral Fe(Ⅱ)-Pd(Ⅱ) coordination cages from stereolabile metalloligands: Stereochemical stability and enantioselective separation[J]. J. Am. Chem. Soc., 2018,140:18183-18191. doi: 10.1021/jacs.8b11152

    26. [26]

      Kou Y L, Tong J, Meng C, Yuan Q, Wang J, Yu S Y. Reversible and turn-on fluorescence detection of phosphate in aqueous solution and living cell imaging by supramolecular metallacycles with AIE-active ligands[J]. ACS Appl. Mater. Interfaces, 2023,15:10828-40838.

    27. [27]

      Wang P P, Tong J, Meng C, Yuan Q, Deng W, Yu S Y, Ma H W. Self-assembly of tripyrazolate-linked[M6L2] cages for the selective sensing of HSO3- and gaseous SO2 by turn-on fluorescence[J]. Dalton Trans., 2023,52(19):6129-6137.

    28. [28]

      Cui Y, Chen Z M, Jiang X F, Tong J, Yu S Y. Self-assembly and anion sensing of metal-organic[M6L2] cages from fluorescent triphe-nylamine tri-pyrazoles with dipalladium (Ⅱ, Ⅱ) corners[J]. Dalton Trans., 2017,46(18):5801-5805. doi: 10.1039/C7DT00179G

    29. [29]

      Liu Y, Liu F Z, Yan K K. Mechanochemical access to a short-lived cyclic dimer Pd2L2: An elusive kinetic species en route to molecular triangle Pd3L3 and molecular square Pd4L4[J]. Angew. Chem. Int. Ed., 2022,61(18)e202116980. doi: 10.1002/anie.202116980

    30. [30]

      Krishnaswamy S, Prusty S, Chartrand D, Hanan G S, Chand D K. Self-assembled molecular squares as supramolecular tectons[J]. Cryst. Growth Des., 2018,18:2016-2030. doi: 10.1021/acs.cgd.7b01425

    31. [31]

      Behnia A, Boyle P D, Fard M A. Pincer-plus-one ligands in self-assembly with palladium(Ⅱ): A molecular square and a molecular tetrahedron[J]. Dalton Trans., 2016,45(48):19485-19490. doi: 10.1039/C6DT04264C

    32. [32]

      Zhou M Y, Yu Z S, Deng W, Lu H L, Niu X F, Tong J, Yu S Y. [M8L4]8+-type squares self-assembled by dipalladium corners and bridging aromatic dipyrazole ligands for iodine capture[J]. Inorg Chem., 2023,62:10193-10202. doi: 10.1021/acs.inorgchem.3c00893

    33. [33]

      Gupta G, You Y J, Hadiputra R, Jung J, Kang D K, Lee C Y. Heterome-tallic BODIPY-based molecular squares obtained by self-assembly: Synthesis and biological activities[J]. ACS Omega, 2019,4:13200-13208. doi: 10.1021/acsomega.9b01328

  • 加载中
    1. [1]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    2. [2]

      Xingwen Cheng Haoran Ren Jiangshan Luo . Boosting the self-trapped exciton emission in vacancy-ordered double perovskites via supramolecular assembly. Chinese Journal of Structural Chemistry, 2024, 43(6): 100306-100306. doi: 10.1016/j.cjsc.2024.100306

    3. [3]

      Rui WangYang LiangJulius Rebek Jr.Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228

    4. [4]

      Wenlong LiFeishi ShanQingdong BaoQinghua LiHua GaoLeyong Wang . Supramolecular assembly nanoparticle for trans-epithelial treatment of keratoconus. Chinese Chemical Letters, 2024, 35(10): 110060-. doi: 10.1016/j.cclet.2024.110060

    5. [5]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    6. [6]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    7. [7]

      Zengchao GuoWeiwei LiuTengfei LiuJinpeng WangHui JiangXiaohui LiuYossi WeizmannXuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060

    8. [8]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    9. [9]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    10. [10]

      Guoxing LiuYixin LiChangming TianYongmei XiaoLijie LiuZhanqi CaoSong JiangXin ZhengCaoyuan NiuYun-Lai RenLiangru YangXianfu ZhengYong Chen . Highly reversible photomodulated hydrosoluble stiff-stilbene supramolecular luminophor induced by cucurbituril. Chinese Chemical Letters, 2024, 35(8): 109403-. doi: 10.1016/j.cclet.2023.109403

    11. [11]

      Gang LangJing FengBo FengJunlan HuZhiling RanZhiting ZhouZhenju JiangYunxiang HeJunling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113

    12. [12]

      Lei ZhouYoujun ZhouLizhen FangYiqiao BaiYujia MengLiang LiJie YangYong Yao . Pillar[5]arene based artificial light-harvesting supramolecular polymer for efficient and recyclable photocatalytic applications. Chinese Chemical Letters, 2024, 35(9): 109509-. doi: 10.1016/j.cclet.2024.109509

    13. [13]

      Bingbing ShiYuchun WangYi ZhouXing-Xing ZhaoYizhou LiNuoqian YanWen-Juan QuQi LinTai-Bao Wei . A supramolecular oligo[2]rotaxane constructed by orthogonal platinum(Ⅱ) metallacycle and pillar[5]arene-based host–guest interactions. Chinese Chemical Letters, 2024, 35(10): 109540-. doi: 10.1016/j.cclet.2024.109540

    14. [14]

      Ying GaoRong ZhouQiwen WangShaolong QiYuanyuan LvShuang LiuJie ShenGuocan Yu . Natural killer cell membrane doped supramolecular nanoplatform with immuno-modulatory functions for immuno-enhanced tumor phototherapy. Chinese Chemical Letters, 2024, 35(10): 109521-. doi: 10.1016/j.cclet.2024.109521

    15. [15]

      Xing TianDi WuWanheng WeiGuifu DaiZhanxian LiBenhua WangMingming Yu . A lipid droplets-targetable fluorescent probe for polarity detection in cells of iron death, inflammation and fatty liver tissue. Chinese Chemical Letters, 2024, 35(6): 108912-. doi: 10.1016/j.cclet.2023.108912

    16. [16]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    17. [17]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    18. [18]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    19. [19]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    20. [20]

      Zixi ZouJingyuan WangYian SunQian WangDa-Hui Qu . Controlling molecular assembly on time scale: Time-dependent multicolor fluorescence for information encryption. Chinese Chemical Letters, 2024, 35(7): 108972-. doi: 10.1016/j.cclet.2023.108972

Metrics
  • PDF Downloads(3)
  • Abstract views(165)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return