Citation: Wendian XIE, Yuehua LONG, Jianyang XIE, Liqun XING, Shixiong SHE, Yan YANG, Zhihao HUANG. Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050 shu

Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane

Figures(8)

  • The two-dimensional covalent organic framework (COF) membrane material TpOMe-BMTH was prepared on the anodic aluminum oxide (AAO) substrate with 2, 5-di-(2-methoxy-methoxy-ethoxy)-phenylmethylhydrazide (BMTH) and 2, 4, 6-trimethoxy-1, 3, 5-benzenetricarbaldehyde (TpOMe) condensation based on interfacial polymerization. The separation properties of the obtained membrane material for lithium and magnesium ions were investigated. Results showed that the TpOMe-BMTH/AAO membranes possessed high crystallization, good stability, and excellent metal ion selectivity, with a separation factor of up to 258 for Li+/Mg2+ in a binary salt system consisting of LiCl (0.1 mol·L-1) and MgCl2 (0.1 mol·L-1). The plane wave pseudopotential method calculation based on the density functional theory showed that the binding energy of the oxygen-rich oligoether chains in the material pore for Li+ and Mg2+ was -282.69 or -13.46 kJ·mol-1. This result means that the obtained membrane has stronger lithium-philic properties and promotes Li+ adsorption diffusion along the one-dimensional pore of the COF membrane, finally enabling the efficient separation of lithium and magnesium ions.
  • 加载中
    1. [1]

      Silvia R, Munirah M, Choo Y W, Gayathri N, Masoumeh Z, Ho K S, Amir R. Advances in metal organic framework (MOF)-based membranes and adsorbents for lithium-ion extraction[J]. Sep. Purif. Technol., 2023,307122628. doi: 10.1016/j.seppur.2022.122628

    2. [2]

      Liu Y B, Ma B Z, Lü Y W, Wang C Y, Chen Y Q. A review of lithium extraction from natural resources[J]. Int. J Miner. Metall. Mater., 2023,30:209-224. doi: 10.1007/s12613-022-2544-y

    3. [3]

      Choubey P K, Kim M S, Srivastava R R. Advance review on the exploitation of the prominent energy-storage element: Lithium. Part Ⅰ: From mineral and brine resources[J]. Miner. Eng., 2016,89:119-137. doi: 10.1016/j.mineng.2016.01.010

    4. [4]

      Gao X X, Ding R, Huang H L, Liu B S, Zhao X D. Constructing a carboxyl-rich angstrom-level trap in a metal-organic framework for the selective capture of lithium[J]. Chem. Commun., 2023,5913183. doi: 10.1039/D3CC03913G

    5. [5]

      LI Y, WANG M, ZHAO Y J, WANG H Y, YANG H J, ZHU Z H. Study on separation of magnesium and lithium from salt lake brine with high magnesium-to-lithium mass ratio by nanofiltration membrane[J]. CIESC Journal, 2021,72(6):3130-3139.  

    6. [6]

      Zhang Y, Wang L, Sun W, Hu Y H, Tang H H. Membrane technologies for Li+/Mg2+ separation from salt-lake brines and seawater: A comprehensive review[J]. J. Ind. Eng. Chem., 2020,81:7-23. doi: 10.1016/j.jiec.2019.09.002

    7. [7]

      Li X H, Zhang C J, Zhang S N, Li J X, He B Q, Cui Z Y. Preparation and characterization of positively charged polyamide composite nanofiltration hollow fiber membrane for lithium and magnesium separation[J]. Desalination, 2015,369:26-36. doi: 10.1016/j.desal.2015.04.027

    8. [8]

      Hu Y X, Su H, Zhu Z W, Qi T, Pang Q S. Environmentally benign techniques of lithium extraction from salt lakes: A review[J]. Environ. Chem. Lett., 2024,22:105-120. doi: 10.1007/s10311-023-01669-0

    9. [9]

      Wang S L, Li P, Zhang X, Zheng S L, Zhang Y. Selective adsorption of lithium from high g-containing brines using HxTiO3 ion sieve[J]. Hydrometallurgy, 2017,174:21-28. doi: 10.1016/j.hydromet.2017.09.009

    10. [10]

      Masmoudi A, Zante G, Trébouet D, Barillon R, Boltoeva M. Solvent extraction of lithium ions using benzoyltrifluoroacetone in new solvents[J]. Sep. Purif. Technol., 2021,255117653. doi: 10.1016/j.seppur.2020.117653

    11. [11]

      Hou J, Zhang H C, Lu J, Li X Y, Zhao C, Wang H T, Thornton A W, Konstas K. Influence of surface chemistry and channel shapes on the lithium-ion separation in metal-organic-framework-nanochannel membranes[J]. J. Membrane Sci., 2023,674121511. doi: 10.1016/j.memsci.2023.121511

    12. [12]

      Sun S Y, Cai L J, Nie X Y, Song X F, Yu J G. Separation of magnesium and lithium from brine using a Desal nanofiltration membrane[J]. J. Water Process Eng., 2015(7):210-217.

    13. [13]

      Saif H M, Huertas R M, Pawlowski S, Crespo J G, Velizarov S. Development of highly selective composite polymeric membranes for Li+/Mg2+ separation[J]. J. Membrane Sci., 2021,620118891. doi: 10.1016/j.memsci.2020.118891

    14. [14]

      Zhang R J, Ti an, J Y, Gao S S, Bruggen V B. How to coordinate the trade-off between water permeability and salt rejection in nanofiltration?[J]. J. Mater. Chem. A, 2020,8:8831-8847. doi: 10.1039/D0TA02510K

    15. [15]

      Sun Y, Wang Q, Wang Y H, Yun R P, Xiang X. Recent advances in magnesium/lithium separation and lithium extraction technologies from salt lake brine[J]. Sep. Purif. Technol., 2021,256117807. doi: 10.1016/j.seppur.2020.117807

    16. [16]

      Qin X M, Qin X Y, Xu X R, Zhao J B, Gui Y H, Guo H S, Mao J S, Wang Y, Zhang Z. The membrane-based desalination: Focus on MOFs and COFs[J]. Desalination, 2023,557116598. doi: 10.1016/j.desal.2023.116598

    17. [17]

      Li J, Zhou X, Wang J, Li X F. Two-dimensional covalent organic frameworks (COFs) for membrane separation: A mini review[J]. Ind. Eng. Chem. Res., 2019,58(34):15394-15406. doi: 10.1021/acs.iecr.9b02708

    18. [18]

      Sheng F M, Wu B, Li X Y, Xu T T, Shehzad M A, Wang X X, Ge L, Wang H T, Xu T W. Efficient ion sieving in covalent organic framework membranes with sub-2-nanometer channels[J]. Adv. Mater., 2021,332104404. doi: 10.1002/adma.202104404

    19. [19]

      Bing S S, Xian W P, Chen S F, Song Y P, Hou L X, Liu X L, Ma S Q, Sun Q, Zhang L. Bio-inspired construction of ion conductive pathway in covalent organic framework membranes for efficient lithium extraction[J]. Mater., 2021,4:2027-2038.

    20. [20]

      Niu B, Xin W W, Qian Y C, Kong X Y, Jiang L, Wen L P. Covalent organic frameworks embedded in polystyrene membranes for ion sieving[J]. Chem. Commun., 2022,58:5403-5406. doi: 10.1039/D2CC01298G

    21. [21]

      Xu F, Dai L H, Wu Y L, Xu Z. Li+/Mg2+ separation by membrane separation: The role of the compensatory effect[J]. J. Membrane Sci., 2021,636119542. doi: 10.1016/j.memsci.2021.119542

    22. [22]

      Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I J, Refson K, Payne M C. First principles methods using CASTEP[J]. Z. für Kristallogr.-Cryst. Mater., 2005,220(5/6):567-570.

    23. [23]

      Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Phys. Rev. B, 1990,41(11):7892-7895. doi: 10.1103/PhysRevB.41.7892

    24. [24]

      Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys. Rev. Lett., 1996,77(18):3865-3868. doi: 10.1103/PhysRevLett.77.3865

    25. [25]

      Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations[J]. Phys. Rev. B, 1976,13(12):5188-5192. doi: 10.1103/PhysRevB.13.5188

    26. [26]

      Pfrommer B G, Côté M, Louie S G, Cohen M L. Relaxation of crystals with the quasi-Newton method[J]. J. Comput. Phys., 1997,131(1):233-240. doi: 10.1006/jcph.1996.5612

    27. [27]

      Xu T T, Shehzad M A, Yu D B, Li Q H, Wu B, Ren X M, Ge L, Xu T W. Highly cation permselective metal-organic framework membranes with leaf-like morphology[J]. ChemSusChem, 2019,12:2593-2597. doi: 10.1002/cssc.201900706

    28. [28]

      Liu S F, Liu Z Q, Su Q, Wu Q L. Multifunctional covalent organic frameworks for photocatalytic oxidative hydroxylation of arylboronic acids and fluorescence sensing for Cu2+[J]. Micropor. Mesopor. Mat., 2022,333111737. doi: 10.1016/j.micromeso.2022.111737

    29. [29]

      Zhang Y, Wu J J, Gao J K, Chen X H, Wang Q B, Yu X L, Zhang Z H, Liu M S, Li J B. Oxygen ether chain containing covalent organic frameworks as efficient fluorescence-enhanced probe for water detection[J]. J. Solid State Chem., 2023,318123727. doi: 10.1016/j.jssc.2022.123727

    30. [30]

      Wang H J, Zhai Y M, Li Y, Cao Y, Shi B B, Li R L, Zhu Z T, Jiang H F, Guo Z Y, Wang M D, Chen L, Liu Y W, Zhou K G, Pan F S, Jiang Z Y. Covalent organic framework membranes for efficient separation of monovalent cations[J]. Nat. Commun., 2022,137123. doi: 10.1038/s41467-022-34849-7

    31. [31]

      Yang Y X, Ma W D, Li G R, Zhong C, Yan X, Huang W N, Zhang S S, Cai Z W, Lin Z. Polyamide-supported covalent organic framework nanomembranes for molecular size-dependent selective separation[J]. ACS Appl. Nano Mater., 2021,4:13967-13975. doi: 10.1021/acsanm.1c03279

    32. [32]

      Segall M D, Pickard C J, Shah R, Payne M C. Population analysis in plane wave electronic structure calculations[J]. Mol. Phys., 1996,89:571-577. doi: 10.1080/002689796173912

  • 加载中
    1. [1]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    2. [2]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    3. [3]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    4. [4]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    5. [5]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    6. [6]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    7. [7]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    8. [8]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    9. [9]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    10. [10]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    11. [11]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    12. [12]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    13. [13]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    14. [14]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    15. [15]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    16. [16]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    17. [17]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    18. [18]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    19. [19]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    20. [20]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

Metrics
  • PDF Downloads(0)
  • Abstract views(138)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return