Citation: Yufang GAO, Nan HOU, Yaning LIANG, Ning LI, Yanting ZHANG, Zelong LI, Xiaofeng LI. Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036 shu

Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction

  • Corresponding author: Xiaofeng LI, lixiaofeng6008@163.com
  • Received Date: 25 January 2024
    Revised Date: 22 April 2024

Figures(8)

  • A nano-thin layer MWW-type zeolite, derived from fumed silica, was dynamically in-situ synthesized at 150 ℃ using a dual-template system of cetyltrimethylammonium bromide (CTAB) and hexamethylene imine(HMI). The effect of CTAB amount on the zeolite was also investigated. The nano-thin layer samples were characterized using powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), N2 adsorption-desorption, ammonia temperature programmed desorption (NH3-TPD), high-resolution transmission electron microscopy (HRTEM), pyridine infrared spectroscopy (Py-IR), and 2, 6-di-tert-butylpyridine infrared spectroscopy (DTBPy-IR). The results indicated that MWW nanosheets with a thickness of 5-10 nm can be prepared using the double template system. Furthermore, the catalytic performance of the samples was evaluated through the isomerization of the trimethylbenzenes reaction. The catalytic results show that the sample d-MWW-4%CTAB exhibits good catalytic performance, with the conversion of 1, 2, 4-trimethylbenzene, the yield of 1, 3, 5-trimethylbenzene, and the selectivity of 1, 3, 5-trimethylbenzene being 34.97%, 22.42%, and 64.09%, respectively. This is primarily attributed to the external surface area and interlayer mesoporous structure formed in the nano-thin layer MCM-22.
  • 加载中
    1. [1]

      Rubin M K, Chu P. Composition of synthetic porous crystalline material, its synthesis and use: US4954325. 1990-09-04.

    2. [2]

      Leonowicz M E, Lawton J A, Lawton S L, Rubin M K. MCM-22: A molecular sieve with two independent multidimensional channel systems[J]. Science, 1994,264(5167):1910-1913. doi: 10.1126/science.264.5167.1910

    3. [3]

      Corma A, Fornés V, Pergher S B, Maesen T L M, Buglass J G. Delaminated zeolite precursors as selective acidic catalysts[J]. Nature, 1998,396(6709):353-356. doi: 10.1038/24592

    4. [4]

      Liu Y, Qiang W L, Ji T T, Zhang M, Li M R, Lu J M. Uniform hierarchical MFI nanosheets prepared via anisotropic etching for solution-based sub-100-nm-thick oriented MFI layer fabrication[J]. Sci. Adv., 2020,6(7):1-8.

    5. [5]

      Chu N B, Wang J Q, Zhang Y, Yang J H, Lu J M, Yin D H. Nestlike hollow hierarchical MCM-22 microspheres: Synthesis and exceptional catalytic properties[J]. Chem. Mat., 2010,22(9):2757-2763. doi: 10.1021/cm903645p

    6. [6]

      Zhou D, Zhang T J, Xia Q H, Zhao Y R, Lv K V, Lu X H, Nie R F. One‑pot rota‑crystallized hollownest‑structured Ti‑zeolite: A calcination-free and recyclable catalytic material[J]. Chem. Sci., 2016,7(8):4966-4972. doi: 10.1039/C6SC01735E

    7. [7]

      Schwanke A, Villarroel-Rocha J, Sapag K, Díaz U, Corma A, Pergher S. Dandelion-like microspherical MCM-22 zeolite using BP 2000 as a hard template[J]. ACS Omega, 2018,3(6):6217-6223. doi: 10.1021/acsomega.8b00647

    8. [8]

      Chen J Q, Li Y Z, Hao Q Q, Chen H Y, Liu Z T, Dai C Y, Zhang J B, Ma X X, Liu Z W. Controlled direct synthesis of single-to-multiple-layer MWW zeolite[J]. Natl. Sci. Rev., 2021,8(7):1-8.

    9. [9]

      Xu L, Sun J L. Recent advances in the synthesis and application of two-dimensional zeolites[J]. Adv. Energy Mater., 2016,6(17):1-18.

    10. [10]

      Přech J, Pizarro P, Serrano D P, Čejka J. From 3D to 2D zeolite catalytic materials[J]. Chem. Soc. Rev., 2018,47(22):8263-8306. doi: 10.1039/C8CS00370J

    11. [11]

      Margarit V J, Martínez‐Armero M E, Navarro M T, Martínez Z, Corma A. Direct dual‐template synthesis of MWW zeolite monolayers[J]. Angew. Chem. Int. Ed., 2015,54(46):13724-13728. doi: 10.1002/anie.201506822

    12. [12]

      Wang Z D, Cichocka M O, Luo Y, Zhang B, Sun H M, Tang Y, Yang W M. Controllable direct-syntheses of delaminated MWW-type zeolites[J]. Chin. J. Catal., 2020,41(7):1062-1066. doi: 10.1016/S1872-2067(20)63545-8

    13. [13]

      Cao S W, Shang Y S, Liu Y S, Wang J, Sun Y, Gong Y J, Mo G, Li Z H, Liu P. "Desert rose" MCM-22 microsphere: Synthesis, formation mechanism and alkylation performance[J]. Microporous Mesoporous Mat., 2021,315:1-12.

    14. [14]

      Cao S W, Sun Y, Shang Y S, Wang J, Gong Y J, Mo G, Li Z H, Zhang Z D, Ma A. Dual-template synthesis of thinner-layered MCM-49 zeolite to boost its alkylation performance[J]. Mol. Catal., 2022,524:1-11.

    15. [15]

      YUAN M T. Synthesis and pillaring of nanosheets zeolites for alkylation reaction. Xi'an: Northwest University, 2020: 28-44

    16. [16]

      Toprakci I, Ozdemir H, Oksuzomer M A F, Sahin S. H-MCM-22 synthesis, characterization, and application: Perfomance for the removal of diclofenac from aqueous solution[J]. Biomass Convers. Biorefinery, 2023:1-10.

    17. [17]

      Zhou Y W, Mu Y Y, Hsieh M F, Kabius B, Pacheco C, Bator C, Rioux R M, Rimer J D. Enhanced surface activity of MWW zeolite nanosheets prepared via a one-step synthesis[J]. J. Am. Chem. Soc., 2020,142(18):8211-8222.

    18. [18]

      Sahu P, Sahu A, Sakthivel A. Cyclocondensation of anthranilamide with aldehydes on gallium-containing MCM-22 zeolite materials[J]. ACS omega, 2021,6(43):28828-28837.

    19. [19]

      Corma A, Corell C, Fornés V, Kolodziejski W, Pérez-Parente J. Infrared spectroscopy, thermoprogrammed desorption, and nuclear magnetic resonance study of the acidity, structure, and stability of zeolite MCM-22[J]. Zeolites, 1995,15(7):576-582.

    20. [20]

      Liu B Y, Liao Z T, Wu Y, Ding C H, Butt F S, Huang Y, Dong J X. Efficient production of linear alkylbenzene by liquid alkylation between benzene and 1-dodecene over MWW zeolites[J]. Mol. Catal., 2022,531:1-10.

    21. [21]

      Golabek K, Tarach K A, Góra-Marek K. Standard and rapid scan infrared spectroscopic studies of o-xylene transformations in terms of pore arrangement of 10-ring zeolites-2D COS analysis[J]. Dalton Trans., 2017,46:9934-9950.

    22. [22]

      LI L Y, CHEN Y, XU Z Q, YUAN Z Q, WANG Y D, HE H Y, YANG W M. Adsorption and diffusion of mesitylene on MCM-22 and MCM-56 molecular sieves[J]. Industrial Catalysis, 2013,21(7):30-34.  

  • 加载中
    1. [1]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    2. [2]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    3. [3]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    4. [4]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    5. [5]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    6. [6]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    7. [7]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    8. [8]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    9. [9]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    10. [10]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    11. [11]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    12. [12]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    13. [13]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    14. [14]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    15. [15]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    16. [16]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    17. [17]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    18. [18]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    19. [19]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    20. [20]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

Metrics
  • PDF Downloads(2)
  • Abstract views(62)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return