Citation: Xingyang LI, Tianju LIU, Yang GAO, Dandan ZHANG, Yong ZHOU, Meng PAN. A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026 shu

A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite

Figures(8)

  • Combined strategy of alkali treatment and chromium modification was used to synergistically regulate the pore structure and acidic property of the high-silica ZSM-5 zeolite. During the alkaline treatment, the abundant intergrowth boundaries constructed by adjusting the composition of the synthesis gel induced the formation of meso-pores. Thereby, the limitation of the conventional alkali treatment method coming from the framework Si/Al ratio of parent zeolite was circumvented. In the process of chromium modification, the unique hierarchical pore structure promoted the dispersion of chromium species in the catalyst. Thus, a deep modification of the acidic property was realized. As a result, a high-silica hierarchical zeolite catalyst with suitable acidities was obtained. During the catalytic conversion of methanol to propylene, the variation of the pore structure and acidic property caused obvious changes in the coke deposition behavior of the catalyst and the mass transfer of products. Consequently, the prepared catalyst exhibited excellent catalytic stability and a high selectivity towards propylene and total light olefins.
  • 加载中
    1. [1]

      Cui T L, Lv L B, Zhang W B, Li X H, Chen J S. Programmable synthesis of mesoporous ZSM-5 nanocrystals as selective and stable catalysts for the methanol-to-propylene process[J]. Catal. Sci. Technol., 2016,6(14):5262-5266. doi: 10.1039/C6CY00379F

    2. [2]

      Kim H Y, Lee B, Lim D J, Choe C G, Lim H K. What is the best green propylene production pathway?: Technical, economic, and environmental assessment[J]. Green Chem., 2021,23(19):7635-7645. doi: 10.1039/D1GC01791H

    3. [3]

      Yarulina I, Chowdhury A D, Meirer F, Weckhuysen B M, Gascon J. Recent trends and fundamental insights in the methanol-to-hydrocarbons process[J]. Nat. Catal., 2018,1(6):398-411. doi: 10.1038/s41929-018-0078-5

    4. [4]

      Hwang A, Le T T, Shi Z, Dai H, Rimer J D, Bhan A. Effects of diffusional constraints on lifetime and selectivity in methanol-to-olefins catalysis on HSAPO-34[J]. J. Catal., 2019,369:122-132. doi: 10.1016/j.jcat.2018.10.031

    5. [5]

      Khanmohammadi M, Amani S, Garmarudi A B, Niaei A. Methanol-to-propylene process: Perspective of the most important catalysts and their behavior[J]. Chin. J. Catal., 2016,37(3):325-339. doi: 10.1016/S1872-2067(15)61031-2

    6. [6]

      Zhang W N, Zhi Y C, Huang J D, Wu X Q, Zeng S, Xu S T, Zheng A M, Wei Y X, Liu Z M. Methanol to olefins reaction route based on methylcyclopentadienes as critical intermediates[J]. ACS Catal., 2019,9(8):7373-7379. doi: 10.1021/acscatal.9b02487

    7. [7]

      REN K, ZHANG L L, LI Z, FU Y J. Structure-activity relationship and reaction characteristics of propene aromatization catalyzed by ZSM-5[J]. Chinese J. Inorg. Chem., 2022,38(6):1090-1102.  

    8. [8]

      Yarulina I, De Wispelaere K, Bailleul S, Goetze J, Radersma M, Abou-Hamad E, Vollmer I, Goesten M, Mezari B, Hensen E J M, Martínez-Espín J S, Morten M, Mitchell S, Perez-Ramirez J, Olsbye U, Weckhuysen B M, Van Speybroeck V, Kapteijn F, Gascon J. Structure-performance descriptors and the role of Lewis acidity in the methanol-to-propylene process[J]. Nat. Chem., 2018,10(8):804-812. doi: 10.1038/s41557-018-0081-0

    9. [9]

      Li H Y, Wang Y Q, Fan C Y, Sun C, Wang X, Wang C, Zhang X, Wang S H. Facile synthesis of a superior MTP catalyst: Hierarchical micro-meso-macroporous ZSM-5 zeolites[J]. Appl. Catal. A-Gen., 2018,551:34-48. doi: 10.1016/j.apcata.2017.12.007

    10. [10]

      Kerstens D, Smeyers B, Van Waeyenberg J, Zhang Q, Yu J H, Sels B F. State of the art and perspectives of hierarchical zeolites: Practical overview of synthesis methods and use in catalysis[J]. Adv. Mater., 2020,32(44)e2004690. doi: 10.1002/adma.202004690

    11. [11]

      Bai R S, Song Y, Li Y, Yu J H. Creating hierarchical pores in zeolite catalysts[J]. Trends Chem., 2019,1(6):601-611. doi: 10.1016/j.trechm.2019.05.010

    12. [12]

      Qi R Y, Fu T J, Wan W L, Li Z. Pore fabrication of nano-ZSM-5 zeolite by internal desilication and its influence on the methanol to hydrocarbon reaction[J]. Fuel Process. Technol., 2017,155:191-199. doi: 10.1016/j.fuproc.2016.05.046

    13. [13]

      Groen J C, Moulijn J A, Pérez-Ramírez J. Desilication: On the controlled generation of mesoporosity in MFI zeolites[J]. J. Mater. Chem., 2006,16(22):2121-2131. doi: 10.1039/B517510K

    14. [14]

      Groen J C, Jansen J C, Moulijn J A, Pérez-Ramírez J. Optimal aluminum-assisted mesoporosity development in MFI zeolites by desilication[J]. J. Phys. Chem. B, 2004,108(35):13062-13065. doi: 10.1021/jp047194f

    15. [15]

      Kalantari N, F Bekheet M, Nezhad P D F, Back J O, Farzi A, Penner S, Delibaş N, Schwarz S, Bernardi J, Salari D, Niaei A. Effect of chromium and boron incorporation methods on structural and catalytic properties of hierarchical ZSM-5 in the methanol-to-propylene process[J]. J. Ind. Eng. Chem., 2022,111:168-182. doi: 10.1016/j.jiec.2022.03.049

    16. [16]

      Westgård Erichsen M, Svelle S, Olsbye U. The influence of catalyst acid strength on the methanol to hydrocarbons (MTH) reaction[J]. Catal. Today, 2013,215:216-223. doi: 10.1016/j.cattod.2013.03.017

    17. [17]

      Zhang L, Tu R, Ren G Q, Li Z, Zhai S L, Xu Y C, Yu T. Manipulate the acidity of gallium doped silicalite-1 to optimize methanol to propene performance[J]. Chem. Eng. J., 2023,458141447. doi: 10.1016/j.cej.2023.141447

    18. [18]

      Yarulina I, Bailleul S, Pustovarenko A, Martinez J R, Wispelaere K D, Hajek J, Weckhuysen B M, Houben K, Baldus M, Van Speybroeck V, Kapteijn F, Gascon J. Suppression of the aromatic cycle in methanol-to-olefins reaction over ZSM-5 by post-synthetic modification using calcium[J]. ChemCatChem, 2016,8(19):3057-3063. doi: 10.1002/cctc.201600650

    19. [19]

      Groen J C, Peffer L A A, Moulijn J A, Pérez-Ramírez J. Mesoporosity development in ZSM-5 zeolite upon optimized desilication conditions in alkaline medium[J]. Colloid Surf. A-Physicochem. Eng. Asp., 2004,241(1):53-58.

    20. [20]

      Janssens T V W. A new approach to the modeling of deactivation in the conversion of methanol on zeolite catalysts[J]. J. Catal., 2009,264(2):130-137. doi: 10.1016/j.jcat.2009.03.004

    21. [21]

      Lee S, Choi M. Unveiling coke formation mechanism in MFI zeolites during methanol-to-hydrocarbons conversion[J]. J. Catal., 2019,375:183-192. doi: 10.1016/j.jcat.2019.05.030

    22. [22]

      Armaroli T, Simon L J, Digne M, Montanari T, Bevilacqua M, Valtchev V, Patarin J, Busca G. Effects of crystal size and Si/Al ratio on the surface properties of H-ZSM-5 zeolites[J]. Appl. Catal. A-Gen., 2006,306:78-84. doi: 10.1016/j.apcata.2006.03.030

    23. [23]

      Mozgawa W. The relation between structure and vibrational spectra of natural zeolites[J]. J. Mol. Struct., 2001,596(1):129-137.

    24. [24]

      Mambrim J S T, Pastore H O, Davanzo C U, Vichi E J S, Nakamura O, Vargas H. Synthesis and characterization of chromium silicalite[J]. Chem. Mater., 1993,5(2):66-173.

    25. [25]

      Svelle S, Sommer L, Barbera K, Vennestrøm P N R, Olsbye U, Lillerud K P, Bordiga S, Pan Y H, Beato P. How defects and crystal morphology control the effects of desilication[J]. Catal. Today, 2011,168(1):38-47. doi: 10.1016/j.cattod.2010.12.013

    26. [26]

      Groen J C, Peffer L A A, Pérez-Ramı́rez J. Pore size determination in modified micro- and mesoporous materials[J]. Pitfalls and limitations in gas adsorption data analysis. Microporous Mesoporous Mat., 2003,60(1):1-17.

    27. [27]

      Zhang R Z, Zhao P R, Han L N, Wang J C, Zhao L F. Seed-assisted template-free synthesis of nano-sized ZSM-5 via two-stage crystallization with related investigation of mechanism[J]. Microporous Mesoporous Mat., 2021,312110754. doi: 10.1016/j.micromeso.2020.110754

    28. [28]

      Pan M, Jiang X B, Pang Y H, Pan X F, Zhang Q H, Yang R C, Zheng J J. One-step synthesis of hierarchical ZSM-5 zeolites with low defect density as long-lived MTH catalysts[J]. Appl. Catal. A-Gen., 2023,656:119132-119140. doi: 10.1016/j.apcata.2023.119132

    29. [29]

      Verboekend D, Pérez-Ramírez J. Design of hierarchical zeolite catalysts by desilication[J]. Catal. Sci. Technol., 2011,1(6):879-890. doi: 10.1039/c1cy00150g

    30. [30]

      Palčić A, Moldovan S, El Siblani H, Vicente A, Valtchev V. Defect sites in zeolites: Origin and healing[J]. Adv. Sci., 2022,9(4)2104414. doi: 10.1002/advs.202104414

    31. [31]

      Liu Y H, Zhang Q, Li J Y, Wang X X, Terasaki O, Xu J, Yu J H. Protozeolite-seeded synthesis of single-crystalline hierarchical zeolites with facet-shaped mesopores and their catalytic application in methanol-to-propylene conversion[J]. Angew. Chem. Int. Ed., 2022,61(34)e202205716. doi: 10.1002/anie.202205716

    32. [32]

      Kim J, Choi M, Ryoo R. Effect of mesoporosity against the deactivation of MFI zeolite catalyst during the methanol-to-hydrocarbon conversion process[J]. J. Catal., 2010,269(1):219-228. doi: 10.1016/j.jcat.2009.11.009

  • 加载中
    1. [1]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    2. [2]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    3. [3]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    4. [4]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    5. [5]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    6. [6]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    7. [7]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    8. [8]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    9. [9]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    10. [10]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    11. [11]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    12. [12]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    13. [13]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    14. [14]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    15. [15]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    16. [16]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    17. [17]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    18. [18]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    19. [19]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    20. [20]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

Metrics
  • PDF Downloads(2)
  • Abstract views(184)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return