Citation: Qin ZHU, Jiao MA, Zhihui QIAN, Yuxu LUO, Yujiao GUO, Mingwu XIANG, Xiaofang LIU, Ping NING, Junming GUO. Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022 shu

Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles

Figures(11)

  • Combined with the element doping and morphology controlling strategies, the LiAl0.08Mn1.92O4 cathode material was synthesized by solid-state combustion method and dealt with at different calcination temperatures (600, 650, 700, and 750 ℃). The experimental results showed that the phase structure of LiMn2O4 was not changed by Al doping and the change of calcination temperature. With the increase in temperature, the crystallinity of the sample increased and the particle size enlarged. The calcination temperature of 650 ℃ was the key temperature for the formation of truncated octahedral single crystal particle morphology, and 750 ℃ was the abrupt temperature of the particles that suddenly became larger. The LiAl0.08Mn1.92O4 material with an optimized calcination temperature of 650 ℃ formed a relatively complete truncated octahedral single crystal morphology particle containing (111), (110), and (100) crystal planes, and showed excellent electrochemical and kinetic performance. The initial discharge capacity was 112.0 mAh·g-1 at 1C, and the capacity retention rate was 72.9% after 500 cycles. The initial discharge capacities were 107.1 and 100.4 mAh·g-1 at 5C and 10C, and the capacity retention rates were 52.2% and 53.5% after 2 000 cycles, respectively. It had the minimum redox peak potential difference (ΔEp2=0.109 and 0.114 V before and after cycling respectively), the minimum charge transfer resistance (Rct=106.49 and 125.49 Ω before and after cycling respectively), and the large lithium-ion diffusion coefficient (DLi+=1.72×10-16 cm2·s-1). The Al doping and single crystal truncated octahedral particle morphology not only effectively inhibited the Jahn-Teller effect of LiMn2O4 but also relieved the dissolution of Mn, and improved the rate performance and long cycle life of the materials.
  • 加载中
    1. [1]

      WANG N, LI M, JI Y, XIANG M W, GUO Y J, BAI H L, LIU X F, GUO J M. Synthesis and electrochemical properties of truncated octahedral LiZn0.08Al0.01Mn1.91O4 cathode material by solid-state combustion method[J]. Chinese J. Inorg. Chem., 2023,39(6):1042-1052.  

    2. [2]

      Chen Y, Yu D J, An K. Stress-included charge-ordering process in LiMn2O4[J]. Mater. Res. Lett., 2016,5(2):89-94.

    3. [3]

      LUO Y, DING Z B, LIU W, YAN L Q, MIN F Q, XIE J Y, LU J. Preparation and properties of micron single crystal high‑voltage LiNi0.5Mn1.5O4 material[J]. Chinese J. Inorg. Chem., 2022,38(4):611-619.  

    4. [4]

      Sun X R, Xiao R J, Yu X Q, Li H. First-principles simulations for the surface evolution and Mn dissolution in the fully delithiated spinel LiMn2O4[J]. Langmuir, 2021,37:5252-5259. doi: 10.1021/acs.langmuir.1c00197

    5. [5]

      WANG T, WANG W, ZHU D, DUAN X B, WEI Z Q, CHEN Y G. LaF3-coated LiMn2O4: Synthesis and improved performance[J]. Chinese J. Inorg. Chem., 2014,30(11):2461-2468.  

    6. [6]

      He J Y, Ren Y, Zhuang S X, Jiang S Y, Pan X X, Sun G X, Zhu B, Wen Y F, Li X D. Enhanced high-temperature electrochemical properties of in situ carbon-coated truncated octahedral LiMn2O4 cathodes[J]. Chem. Commun., 2023,59:13050-13053. doi: 10.1039/D3CC04119K

    7. [7]

      Jiang S J, Wang S, Li Y J, Hao S P, Xi X M, Liu S W, Xiong Y K, Zhen J C, Zhang P P. Structure and interface modification via Gd boosting excellent high-temperature electrochemical performance of LiMn2O4[J]. Mater. Today Energy, 2022,29101096. doi: 10.1016/j.mtener.2022.101096

    8. [8]

      Margarette S J, Bangeppagari M, Babu K V, Sailaja J M, Veeraiah V, Sangaraju S, Ayyar M, Ravi M. Ce and Cu co-doped LiMn2O4 cathode material: Synthesis, characterization and electrochemical performances[J]. Ceram. Int., 2024,50:4955-4964. doi: 10.1016/j.ceramint.2023.11.238

    9. [9]

      Xie T X, Ren P W, Yu L Y, Li W, Deng H J, Jiang J B. Optimization of Al3+ doping on the microstructure and electrochemical performance of spinel LiMn2O4[J]. Chinese J. Struct. Chem., 2022,41(2):168-175.

    10. [10]

      Chen H C, Jan D J, Lin B C, Hsueh T H. Nanostructure distortion improvement of Al doped spinel LiMn2O4 films deposited by RF magnetron sputtering for flexible high-voltage lithium ion batteries[J]. Mater. Res. Bull., 2021,140111313. doi: 10.1016/j.materresbull.2021.111313

    11. [11]

      Hou P Y, Tian Y H, Lin Z Z, Dong M H, Li F. Understanding the key role of {100} exposed crystal facets on the electrochemistry of the spinel LiMn2O4 cathode[J]. Inorg. Chem. Front., 2023,105452. doi: 10.1039/D3QI01019H

    12. [12]

      Kim J S, Kim K S, Cho W, Shin W H, Kanno R, Choi J W. A truncated manganese spinel cathode for excellent power and lifetime in lithium ion batteries[J]. Nano Lett., 2012,12(12):6358-6365. doi: 10.1021/nl303619s

    13. [13]

      CHEN Y F, YANG M, XIANG M W, BAI W, GUO J M. Synthesis and electrochemical properties of LiMg0.02Mn1.98O4 cathode materials by solid-state combustion method[J]. Journal of Materials and Metallurgy, 2023,22(6):573-581.  

    14. [14]

      Lee S N, Park D H, Kim J H, Moon S H, Jang J S, Kim B, Shin J H, Park Y Y, Park K W. Enhanced cycling performance of Fe-doped LiMn2O4 truncated octahedral cathodes for Li‑ion batteries[J]. ChemElectroChem, 2022,9(11)e202200385. doi: 10.1002/celc.202200385

    15. [15]

      Fu Y, Jiang H, Hu Y, Dai Y H, Zhang L, Li C Z. Synergistic enhancement effect of Al doping and highly active facets of LiMn2O4 cathode materials for lithium-ion batteries[J]. Ind. Eng. Chem. Res., 2015,54(15):3800-3805. doi: 10.1021/ie504659h

    16. [16]

      Feng X Y, Tian Y, Zhang J X, Yin L W. The effect of aluminum precursors on the structural and electrochemical properties of spinel LiMn2-xAlxO4 (x=0, 0.05, 0.1, 0.15) cathode materials[J]. Powder Technol., 2014,253:35-40. doi: 10.1016/j.powtec.2013.11.006

    17. [17]

      LI M, LIU H L, GUO J M, XIANG M W, LIU X F, BAI H L, BAI W. Preparation and electrochemical properties of Li-Ni co-doping spinel LiMn2O4 single crystal polyhedron material[J]. Acta Materiae Compositae Sinica, 2021,38(10):3402-3411.  

    18. [18]

      Yang M, Liang Q M, Guo Y J, Guo J M, Xiang M W, Bai W, Liu X F. Boosting high-rate capacity and long-cycle stability of spinel LiMn2O4 by the Cr-Al co-doping strategy[J]. J. Energy Storage, 2023,72108528. doi: 10.1016/j.est.2023.108528

    19. [19]

      Chen Y F, Li M, Zhu Q, Bai W, Liu X F, Xiang M W, Guo J M, Liu J T. Enhanced high-rate performance in Zn/Al dual-doped LiMn2O4 with submicron truncated structure[J]. J. Energy Storage, 2024,82110610. doi: 10.1016/j.est.2024.110610

    20. [20]

      Xu W Q, Li Q L, Sui F R, Guo S M, Qi R J, Yan C Q, Chen L J, Xia S B, Guo J M, Li Z, Huang R, Cheng F X. Unveiling the role of Ni doping in the electrochemical performance improvement of the LiMn2O4 cathodes[J]. Appl. Surf. Sci., 2023,624157142. doi: 10.1016/j.apsusc.2023.157142

    21. [21]

      LIU Q, GUO J M, LIU X F, BAI H L, XIANG M W, BAI W, DUAN K J. Preparation and long cycle electrochemical properties of B-doped spinel LiMn2O4 cathode material[J]. Chinese J. Inorg. Chem., 2021,37(2):276-284.  

    22. [22]

      Zhou G L, Chen L L, Li X W, Luo G L, Yu Z D, Yin J Z, Fan L, Chao Y H, Jiang L, Zhu W S. Construction of truncated-octahedral LiMn2O4 for battery-like electrochemical lithium recovery from brine[J]. Green Energy Environ., 2023,8:1081-1090. doi: 10.1016/j.gee.2021.12.002

    23. [23]

      Yi T F, Shi L N, Han X, Wang F F, Zhu R R, Xie Y. Approaching high-performance lithium storage materials by constructing hierarchical CoNiO2@CeO2 nanosheets[J]. Energy Environ. Mater., 2021,4:586-595. doi: 10.1002/eem2.12140

    24. [24]

      Tao Y, Lu Y, Guo Y J, Guo J M, Xiang M W, Bai W, Liu X F, Bai H L. Facile synthesis and electrochemical properties of truncated octahedral Al, Ni dual doped LiMn2O4 cathode materials[J]. J. Alloy. Compd., 2022,904164027. doi: 10.1016/j.jallcom.2022.164027

    25. [25]

      Wei T T, Peng P P, Ji Y R, Zhu Y R, Yi T F, Xie Y. Rational construction and decoration of Li5Cr7Ti6O25@C nanofibers as stable lithium storage materials[J]. J. Energy Chem., 2022,71:400-410. doi: 10.1016/j.jechem.2022.04.017

    26. [26]

      Wei T T, Liu X, Yang S J, Wang P F, Yi T F. Regulating the electrochemical activity of Fe-Mn-Cu-based layer oxides as cathode materials for high-performance Na-ion battery[J]. J. Energy Chem., 2023,80:603-613. doi: 10.1016/j.jechem.2023.02.016

    27. [27]

      Yi T F, Qiu L Y, Mei J, Qi S Y, Cui P, Luo S H, Zhu Y R, Xie Y, He Y B. Porous spherical NiO@NiMoO4@PPy nanoarchitectures as advanced electrochemical pseudocapacitor materials[J]. Sci. Bull., 2020,65:546-556. doi: 10.1016/j.scib.2020.01.011

    28. [28]

      GUO Y J, LU Y, NING P, GUO J M. Preparation and electrochemical performance of single crystal polyhedron LiAl0.08Ni0.03Mn1.89O4 cathode material[J]. Rare Metal Materials and Engineering, 2021,50(12):4525-4533.  

    29. [29]

      Zhu J Y, Liu Q, Xiang M W, Guo J M, Bai H L, Liu X F, Su C W, Bai W. Facile synthesis of truncated octahedron LiNi0.10Mn1.90O4 for high-performance Li-ion batteries[J]. Ceram. Int., 2020,46:14516-14522. doi: 10.1016/j.ceramint.2020.02.250

    30. [30]

      Xu C R, Li Y J, Xu H, Li P L, Kong L, Su Q Y, Cao X L. Electrochemical evaluation of Co-Al dual-doped LiMn2O4 spinels synthesized via hydrothermal method[J]. Int. J. Electrochem. Sci., 2017,12:5185-5198. doi: 10.20964/2017.06.09

    31. [31]

      LIU H L, GUO J M, XIANG M W, BAI W, BAI H L, LIU X F, DUAN K J. Synthesis and electrochemical performance of submicron LiFe0.05Mn1.95O4 cathode material[J]. Chemical Industry and Engineering Progress, 2021,40(7):3915-3922.  

  • 加载中
    1. [1]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    2. [2]

      Kexin YanZhaoqi YeLingtao KongHe LiXue YangYahong ZhangHongbin ZhangYi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019

    3. [3]

      Pei LiYuenan ZhengZhankai LiuAn-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 2406012-0. doi: 10.3866/PKU.WHXB202406012

    4. [4]

      Jiatong Hu Qiyi Wang Ruiwen Tang Jiajing Feng . Photocatalytic Journey of Perylene Diimides in a Competitive Arena. University Chemistry, 2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015

    5. [5]

      Yuming ShuHanghang LeiJiangnan HuangQing PanBaichao ZhangYixin XuYe ZhouGuorong HuYanbing CaoGuoqiang ZouWentao DengZhongdong PengHongshuai HouDi ChenXiaobo Ji . Enabling superior performance in brick-like single-crystal LiMn2O4 via BaO flux. Chinese Chemical Letters, 2025, 36(9): 110345-. doi: 10.1016/j.cclet.2024.110345

    6. [6]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    7. [7]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    8. [8]

      Mingxin LULiyang ZHOUXiaoyu XUXiaoying FENGHui WANGBin YANJie XUChao CHENHui MEIFeng GAO . Preparation of La-doped lead-based piezoelectric ceramics with both high electrical strain and Curie temperature. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 329-338. doi: 10.11862/CJIC.20240206

    9. [9]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    10. [10]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    11. [11]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    12. [12]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    13. [13]

      Lina WangHairu WangQian BuQiong MeiJunbo ZhongBo BaiQizhao Wang . Al-O bridged NiFeOx/BiVO4 photoanode for exceptional photoelectrochemical water splitting. Chinese Chemical Letters, 2025, 36(4): 110139-. doi: 10.1016/j.cclet.2024.110139

    14. [14]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

    15. [15]

      Xiaojun LiuLang QinYanlei Yu . Dynamic Manipulation of Photonic Bandgaps in Cholesteric Liquid Crystal Microdroplets for Applications. Acta Physico-Chimica Sinica, 2024, 40(5): 2305018-0. doi: 10.3866/PKU.WHXB202305018

    16. [16]

      Qin HuLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024

    17. [17]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    18. [18]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    19. [19]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    20. [20]

      Kexin DongChuqi ShenRuyu YanYanping LiuChunqiang ZhuangShijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013

Metrics
  • PDF Downloads(5)
  • Abstract views(1118)
  • HTML views(215)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return