Citation: Zeyuan WANG, Songzhi ZHENG, Hao LI, Jingbo WENG, Wei WANG, Yang WANG, Weihai SUN. Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021 shu

Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells

  • Corresponding author: Weihai SUN, sunweihai@hqu.edu.cn
  • Received Date: 17 January 2024
    Revised Date: 1 May 2024

Figures(8)

  • The CsPbBr3 absorber layer made from CsBr aqueous solution was modified by spin-coating I2 isopropa- nol solution, which the surface defects of the CsPbBr3 layer were passivated, and the CsPbBr3 film with better mor- phology was obtained. The solar cells were optimized by exploring different spin-coating concentrations of CsBr methanol solution, and when 5 mg·mL-1 I2 isopropanol solution was used for interface modification, the perovskite film was significantly improved in morphology from the result of X-ray diffraction, scanning electron microscope and had the best optoelectronic performance. As a consequence, CsPbBr3-based perovskite solar cells (PSCs) with 5 mg· mL-1I2 isopropanol solution can reach the best open-circuit voltage (VOC), short circuit current density (JSC), fill factor (FF) of 1.55 V, 7.45 mA·cm-2, 85.54%, respectively, and the ultimate photoelectric conversion efficiency (PCE) attained 9.88%.
  • 加载中
    1. [1]

      ZHU C W, JIN Y N, ZHANG C H, CHEN H H, CHEN S T, FU Y M, WU Y J, SUN W H. High-performance and stable perovskite solar cells prepared with a green bi‑solvent method[J]. Chinese J. Inorg. Chem., 2023,39(6):1061-1071.  

    2. [2]

      Lin W H, Wu J H, Tian J X, Lin Y H, Yang P Z, Huang Y H, Jiang X Y, Gao L, Wang Y, Sun W H, Lan Z, Huang M L. Synergistic effect of 2-(trifluoromethyl) benzimidazole on the stability and performance of perovskite solar cells[J]. ACS Appl. Mater. Interfaces, 2023,15(30):36468-36476. doi: 10.1021/acsami.3c08583

    3. [3]

      NREL. Best research cell efficiencies chart. (2022)[2024-01-17]. https://www.nrel.gov/pv/cell-efficiency.html.

    4. [4]

      Wang S B, Cao F X, Wu Y J, Zhang X C, Zou J J, Lan Z, Sun W H, Wu J H, Gao P. Multifunctional 2D perovskite capping layer using cyclohexylmethylammonium bromide for highly efficient and stable perovskite solar cells[J]. Mater. Today Phys., 2021,21100543. doi: 10.1016/j.mtphys.2021.100543

    5. [5]

      Noh J H, Im S H, Heo J H, Mandal T N, Seok S I. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells[J]. Nano Lett., 2013,13(4):1764-1769. doi: 10.1021/nl400349b

    6. [6]

      Liang S H, Sheng H F, Liu Y, Huo Z, Lu Y C, Shen H E. ZnO Schottky ultraviolet photodetectors[J]. J. Cryst. Growth, 2001,225(2/3/4):110-113.

    7. [7]

      DUAN J L. Defect state passivation strategy for all‑inorganic perovskite films//Photochemistry Professional Committee of China Renewable Energy Society. Proceedings of the 10th Conference on Science and Technology of Emerging Solar Energy Materials. Beijing: Photochemistry Committee of Chinese Renewable Energy Society, 2023: 80

    8. [8]

      YAN J D, DING L M, YANG A F, YANG T, REN H X. Frontiers and trends in perovskite solar cell research[J]. Science and Technology of China, 2019(1):4-6.  

    9. [9]

      Ullah S, Wang J M, Yang P X, Liu L L, Yang S, Xia T Y, Guo H Z, Chen Y S. All-inorganic CsPbBr3 perovskite: A promising choice for photovoltaics[J]. Mater. Adv., 2021,2(2):646-683. doi: 10.1039/D0MA00866D

    10. [10]

      Cao F X, Chen H W, Wang S B, Chen P X, Zhu C W, Lan Z, Sun W H, Li Y L, Wu J H. One-step constructed dual interfacial layers for stable perovskite solar cells[J]. Mater. Today Phys., 2022,27100796. doi: 10.1016/j.mtphys.2022.100796

    11. [11]

      Wang S B, Cao F X, Chen P X, He R W, Tong A L, Lan Z, Gao P, Sun W H, Wu J H. Two birds with one stone: Simultaneous realization of constructed 3D/2D heterojunction and P-doping of hole transport layer for highly efficient and stable perovskite solar cells[J]. Chem. Eng. J., 2023,453139721. doi: 10.1016/j.cej.2022.139721

    12. [12]

      Yakunin S, Dirin D N, Shynkarenko Y, Morad V, Cherniukh I, Nazarenko O, Kreil D, Nauser T, Kovalenko M V. Detection of gamma photons using solution-grown single crystals of hybrid lead halide perovskites[J]. Nat. Photonics, 2016,10(9):585-589. doi: 10.1038/nphoton.2016.139

    13. [13]

      Kieslich G, Sun S J, Cheetham A K. An extended Tolerance Factor approach for organic-inorganic perovskites[J]. Chem. Sci., 2015,6(6):3430-3433. doi: 10.1039/C5SC00961H

    14. [14]

      Wang S B, Cao F X, Sun W H, Wang C Y, Yan Z L, Wang N, Lan Z, Wu J H. A green Bi-solvent system for processing high-quality CsPbBr3 films in efficient all-inorganic perovskite solar cells[J]. Mater. Today Phys., 2022,22100614. doi: 10.1016/j.mtphys.2022.100614

    15. [15]

      Zhang D, Yuan J F, Tian J J. All-inorganic perovskite solar cells with efficiency > 20%[J]. Sci. China-Mater., 2021,64(10):2624-2626. doi: 10.1007/s40843-021-1726-9

    16. [16]

      Duan C H, Wen Q Y, Fan Y, Li J, Liu Z D, Yan K Y. Improving the stability and scalability of all-inorganic inverted CsPbI2Br perovskite solar cell[J]. J. Energy Chem., 2022,68:176-183. doi: 10.1016/j.jechem.2021.11.026

    17. [17]

      Duan J L, Zhao Y Y, He B L, Tang Q W. Simplified perovskite solar cell with 4[J]. 1% efficiency employing inorganic CsPbBr3 as light absorber. Small, 2018,14(20)1704443.

    18. [18]

      Liu J M, Wu J H, Li G D, Chen Q, Chen X, Geng J L, Ou Yang Q, Sun W H, Lan Z. Interfacial defect passivation effect of N-methyl-N-(thien-2-ylmethyl)amine for highly effective perovskite solar cells[J]. ACS Appl. Energy Mater., 2022,5(4):4270-4278. doi: 10.1021/acsaem.1c03842

    19. [19]

      Li G D, Song J, Wu J H, Xu Y, Deng C Y, Song Z Y, Wang X B, Du Y T, Chen Q, Li R S, Sun W H, Lan Z. Surface defect passivation by 1, 8-naphthyridine for efficient and stable formamidinium-based 2D/3D perovskite solar cells[J]. Chem. Eng. J., 2022,449137806. doi: 10.1016/j.cej.2022.137806

    20. [20]

      Wang D, Li W J, Sun W H, Liu X P, Li G D, Wu Z B, Wu J H, Lan Z. Guanidinium iodide modification enabled highly efficient and stable all-inorganic CsPbBr3 perovskite solar cells[J]. Electrochim. Acta, 2021,365137360. doi: 10.1016/j.electacta.2020.137360

    21. [21]

      Kim S, Chen J Z, Seo J, Kang D, Park N. Rear-surface passivation by melaminium iodide additive for stable and hysteresis-less perovskite solar cells[J]. ACS Appl. Mater. Interfaces, 2018,10(30):25372-25383. doi: 10.1021/acsami.8b06616

    22. [22]

      LI X Y, DONG H Y, XIA T, LIU W T, YAO D S, LONG F. Investigation of post-treatment via tri-iodine for perovskite solar cells[J]. Acta Energiae Solaris Sinica, 2023,44(3):409-414.  

    23. [23]

      Yuan H W, Zhao Y Y, Duan J L, Wang Y D, Yang X Y, Tang Q W. All-inorganic CsPbBr3 perovskite solar cell with 10[J]. 26% efficiency by spectra engineering. J. Mater. Chem. A, 2018,6(47):24324-24329.

    24. [24]

      Chang X W, Li W P, Zhu L Q, Liu H C, Geng H F, Xiang S S, Liu J M, Chen H N. Carbon-based CsPbBr3 perovskite solar cells: All- ambient processes and high thermal stability[J]. ACS Appl. Mater. Interfaces, 2016,8(49):33649-33655. doi: 10.1021/acsami.6b11393

    25. [25]

      Liu J M, Zhu L Q, Xiang S S, Wei Y, Xie M L, Liu H C, Li W P, Chen H N. Growing high-quality CsPbBr3 by using porous CsPb2Br5 as an intermediate: A promising light absorber in carbon-based perovskite solar cells[J]. Sustain. Energy Fuels, 2019,3(1):184-194. doi: 10.1039/C8SE00442K

    26. [26]

      Li X K, He B L, Gong Z K, Zhu J W, Zhang W Y, Chen H Y, Duan Y Y, Tang Q W. Compositional engineering of chloride ion-doped CsPbBr3 halides for highly efficient and stable all‑inorganic perovskite solar cells[J]. Sol. RRL, 2020,4(10)2000362. doi: 10.1002/solr.202000362

    27. [27]

      Li Y N, Duan J L, Yuan H W, Zhao Y Y, He B L, Tang Q W. Lattice modulation of alkali metal cations doped Cs1-xRxPbBr3 halides for inorganic perovskite solar cells[J]. Sol. RRL, 2018,2(10)1800164. doi: 10.1002/solr.201800164

    28. [28]

      Niu G D, Guo X D, Wang L D. Review of recent progress in chemical stability of perovskite solar cells[J]. J. Mater. Chem. A, 2015,3(17):8970-8980. doi: 10.1039/C4TA04994B

    29. [29]

      Wang K, Shi Y T, Gao L G, Chi R H, Shi K, Guo B Y, Zhao L, Ma T L. W(Nb)Ox-based efficient flexible perovskite solar cells: From material optimization to working principle[J]. Nano Energy, 2017,31:424-431. doi: 10.1016/j.nanoen.2016.11.054

    30. [30]

      Dong Q F, Fang Y J, Shao Y C, Mulligan P, Qiu J, Cao L, Huang J S. Electron‑hole diffusion lengths > 175 μm in solution‑grown CH3NH3PbI3 single crystals[J]. Science, 2015,347(6225):967-970. doi: 10.1126/science.aaa5760

    31. [31]

      Zhu W D, Bao C X, Lv B H, Li F M, Yi Y, Wang Y R Q, Yang J, Wang X Y, Yu T, Zou Z G. Dramatically promoted crystallization control of organolead triiodide perovskite film by a homogeneous cap for high efficiency planar-heterojunction solar cells[J]. J. Mater. Chem. A, 2016,4(32):12535-12542. doi: 10.1039/C6TA04332A

    32. [32]

      ZHOU C, PANG B L. Effects of different solvent on the performance of CsPbBr3 inorganic perovskite solar cells[J]. Journal of Qingdao University of Science and Technology (Natural Science Edition), 2022,43(3):20-25.  

    33. [33]

      Zou Y, Cao F X, Chen P X, He R W, Tong A L, Yin C, Lan Z, Sun W H, Wu J H. Stable and highly efficient all-inorganic CsPbBr3 perovskite solar cells by interface engineering with NiO NCs modification[J]. Electrochim. Acta, 2022,435141392. doi: 10.1016/j.electacta.2022.141392

    34. [34]

      Tong A L, Zhu C W, Yan H Y, Zhang C H, Jin Y N, Wu Y J, Cao F X, Wu J H, Sun W H. Defect control for high-efficiency all-inorganic CsPbBr3 perovskite solar cells via hydrophobic polymer interface passivation[J]. J. Alloy. Compd., 2023,942169084. doi: 10.1016/j.jallcom.2023.169084

    35. [35]

      Yuan H W, Zhao Y Y, Duan J L, He B L, Jiao Z B, Tang Q W. Enhanced charge extraction by setting intermediate energy levels in all-inorganic CsPbBr3 perovskite solar cells[J]. Electrochim. Acta, 2018,279:84-90. doi: 10.1016/j.electacta.2018.05.087

    36. [36]

      Hu L, Duan L P, Yao Y C, Chen W J, Zhou Z Z, Cazorla C, Lin C, Guan X W, Geng X, Wang F, Wan T, Wu S Y, Cheong S, Tilley R D, Liu S Q, Yuan J Y, Chu D W, Wu T, Huang S J. Quantum dot passivation of halide perovskite films with reduced defects, suppressed phase segregation, and enhanced stability[J]. Adv. Sci., 2022,9(2)2102258. doi: 10.1002/advs.202102258

    37. [37]

      Karunakaran S K, Arumugam G M, Yang W T, Ge S J, Khan S N, Mai Y H, Lin X Z, Yang G W. Europium(Ⅱ)-doped all-inorganic CsPbBr3 perovskite solar cells with carbon electrodes[J]. Sol. RRL, 2020,4(11)2000390. doi: 10.1002/solr.202000390

    38. [38]

      Liu Y L, Zhou C, Cui C, Liu X, Pang B L, Feng J G, Dong H Z, Yu L Y, Dong L F. Enhancement of CsPbBr3 hole-free perovskite solar cells through natural dye modifications[J]. Sol. RRL, 2023,7(24)2300454. doi: 10.1002/solr.202300454

    39. [39]

      Ding Y, He B L, Zhu J W, Zhang W Y, Su G D, Duan J L, Zhao Y Y, Chen H Y, Tang Q W. Advanced modification of perovskite surfaces for defect passivation and efficient charge extraction in air-stable cspbbr3 perovskite solar cells[J]. ACS Sustain. Chem. Eng., 2019,7(23):19286-19294. doi: 10.1021/acssuschemeng.9b05631

  • 加载中
    1. [1]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    2. [2]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    3. [3]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    4. [4]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    5. [5]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    6. [6]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    7. [7]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    8. [8]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    9. [9]

      Zizhuo Liang Fuming Du Ning Zhao Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108

    10. [10]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    11. [11]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    12. [12]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    13. [13]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    14. [14]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

    15. [15]

      Guangchang YangShenglong YangJinlian YuYishun XieChunlei TanFeiyan LaiQianqian JinHongqiang WangXiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722

    16. [16]

      Yuchen Guo Xiangyu Zou Xueling Wei Weiwei Bao Junjun Zhang Jie Han Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206

    17. [17]

      Cuiwu MOGangmin ZHANGChao WUZhipeng HUANGChi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045

    18. [18]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    19. [19]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    20. [20]

      Maomao Liu Guizeng Liang Ningce Zhang Tao Li Lipeng Diao Ping Lu Xiaoliang Zhao Daohao Li Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359

Metrics
  • PDF Downloads(1)
  • Abstract views(184)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return