Citation: Maitri Bhattacharjee, Rekha Boruah Smriti, R. N. Dutta Purkayastha, Waldemar Maniukiewicz, Shubhamoy Chowdhury, Debasish Maiti, Tamanna Akhtar. Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007 shu

Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands

Figures(8)

  • Three new copper(Ⅱ) complexes 1-3 of Schiff base ligands HL1 (2-hydroxybenzaldehyde2-(2-oxo-1, 2-diphenylethylidene)hydrazone), HL2 (4-hydroxybenzaldehyde2-(2-oxo-1, 2-diphenylethylidene)hydrazone) and L3 (2-methoxybenzaldehyde2-(2-oxo-1, 2-diphenylethylidene)hydrazone) were synthesized from methanolic medium. The complexes were characterized by elemental analyses, spectroscopic methods, magnetic susceptibility measurements, and density functional theory (DFT) studies. The synthesized ligands were characterized structurally by single-crystal X-ray diffraction studies. The optimized structure of the complexes was ascertained by DFT studies. The DNA binding ability of the complexes with calf thymus DNA (CT-DNA) was studied by UV-Vis absorption and fluorescence emission spectral studies. Absorption spectral studies revealed a hyperchromic effect and suggested the possible mode of interaction with CT-DNA. The competitive binding studies using ethidium bromide (EB) show that the complexes can replace DNA from DNA-EB adduct and suggests that the complexes probably bind to CT-DNA in intercalative mode. In vitro antibacterial activity of the complexes against Gram-negative bacteria Klebsiella pneumoniae (K. pneumoniae), Escherichia coli(E. coli), and Shigella boydii (S. boydii), and gram-positive bacteria Staphylococcus aureus (S. aureus) exhibited an appreciable antibacterial activity of complex 2 against K. pneumoniae and S. boydii, but complexes 1 and 3 did not show any significant antibacterial activity.
  • 加载中
    1. [1]

      Yamada S. Advancement in stereochemical aspects of Schiff base metal complexes[J]. Coord. Chem. Rev., 1999,190-192:537-555. doi: 10.1016/S0010-8545(99)00099-5

    2. [2]

      Niederhoffer E C, Timmons J H, Martell A E. Thermodynamics of oxygen binding in natural and synthetic dioxygen complexes[J]. Chem. Rev., 1984,84(2):137-203. doi: 10.1021/cr00060a003

    3. [3]

      Choudhury C R, Dey S K, Mondal N, Mitra S, Mahalli S O G, Abdul Malik K M. J[J]. Chem. Crystallogr., 2002,31(1):57-62.

    4. [4]

      Refat M S, El-Sayed M Y, Adam A M. Cu (Ⅱ), Co (Ⅱ) and Ni (Ⅱ) complexes of new Schiff base ligand: Synthesis, thermal and spectroscopic characterizations[J]. J. Mol. Struct., 2013,1038:62-72. doi: 10.1016/j.molstruc.2013.01.059

    5. [5]

      Holm R H. Studies on Ni (Ⅱ) complexes. Ⅰ. Spectra of tricyclic Schiff base complexes of Ni (Ⅱ) and Cu (Ⅱ)[J]. J. Am. Chem. Soc., 1960,82(21):5632-5636.

    6. [6]

      Lyons C T, Stack T D P. Recent advances in phenoxyl radical complexes of salen-type ligands as mixed-valent galactose oxidase models[J]. Coord. Chem. Rev., 2013,257(2):528-540. doi: 10.1016/j.ccr.2012.06.003

    7. [7]

      Mascharak P K. Structural and functional models of nitrile hydratase[J]. Coord. Chem. Rev., 2002,225(1/2):201-214.

    8. [8]

      Aziz A A. Synthesis, spectroscopic characterization, thermal studies, catalytic epoxidation and biological activity of chromium and molybdenum hexacarbonyl bound to a novel N2O2 Schiff base[J]. J. Mol. Struct., 2010,979(1/2/3):77-85.

    9. [9]

      Zhang W, Loebach J L, Wilson S R, Jacobsen E N. Enantioselective epoxidation of unfunctionalized olefins catalyzed by salen manganese complexes[J]. J. Am. Chem. Soc., 1990,112(7):2801-2803. doi: 10.1021/ja00163a052

    10. [10]

      Tisato J, Refosco F, Bandoli F. Structural survey of technetium complexes[J]. Coord. Chem. Rev., 1994,135-136:325-397. doi: 10.1016/0010-8545(94)80072-3

    11. [11]

      Kakanejadifard A, Esna-Ashari F, Hashemi P, Zabardasti A. Synthesis and characterization of an azo dibenzoic acid Schiff base and its Ni (Ⅱ), Pb (Ⅱ), Zn (Ⅱ) and Cd (Ⅱ) complexes[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2013,106:80-85. doi: 10.1016/j.saa.2012.12.044

    12. [12]

      Tawfik A M, El-Ghamry M A, Abu-El-Wafa S M, Ahmed N M. A new bioactive Schiff base ligands derived from propylazo-N-pyrimidin-2-yl-benzenesulfonamides Mn (Ⅱ) and Cu (Ⅱ) complexes: Synthesis, thermal and spectroscopic characterization biological studies and 3D modeling structures[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2012,97:1172-1180. doi: 10.1016/j.saa.2012.07.102

    13. [13]

      Keypour H, Shayesteh M, Rezaeivala M, Chalabian F, Elerman Y, Buyukgungor O. Synthesis, spectral characterization, structural investigation and antimicrobial studies of mononuclear Cu (Ⅱ), Ni (Ⅱ), Co (Ⅱ), Zn (Ⅱ) and Cd (Ⅱ) complexes of a new potentially hexadentate N2O4 Schiff base ligand derived from salicylaldehyde[J]. J. Mol. Struct., 2013,1032:62-68. doi: 10.1016/j.molstruc.2012.07.056

    14. [14]

      Cheng J H, Ma X F, Zhang Y H, Liu J Y, Zhou X G, Xiang H F. Optical chemosensors based on transmetalation of salen-based Schiff base complexes[J]. Inorg. Chem., 2014,53(6):3210-3219. doi: 10.1021/ic5000815

    15. [15]

      AbuDiet A M, Díaz-Torres R, Sañudo E C, Abdel-Rahman L H, Aliaga-Alcalde N. Novel sandwich triple-decker dinuclear Nd-(bis-N, N'-p-bromo-salicylideneamine-1, 2-diaminobenzene) complex[J]. Polyhedron, 2013,64:203-208. doi: 10.1016/j.poly.2013.04.010

    16. [16]

      Xu H, He C, Sui Y X, Ren X M, Guo L M, Zhang Y G, Nishihara S, Hosokoshi Y. Self-assembled molecular magnets from discrete dimer to onedimensional helical chain: Syntheses, crystal structures and magnetic properties[J]. Polyhedron, 2007,26(15):4463-4469. doi: 10.1016/j.poly.2007.05.047

    17. [17]

      Ulusoy M, BirelÖ , Sahin O, Büyükgüngör O, Cetinkaya B. Structural, spectral, electrochemical and catalytic reactivity studies of a series of N2O2 chelated palladium (Ⅱ) complexes[J]. Polyhedron, 2012,38(1):141-148. doi: 10.1016/j.poly.2012.02.035

    18. [18]

      Yousef T A, El-Gammal O A, Ahmed S F, Abu El-Reash G M. Synthesis, biological and comparative DFT studies on Ni (Ⅱ) complexes of NO and NOS donor ligands[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2015,135:690-703. doi: 10.1016/j.saa.2014.07.015

    19. [19]

      Gupta K C, Sutar A K. Catalytic activities of Schiff base transition metal complexes[J]. Coord. Chem. Rev., 2008,252(12/13/14):1420-1450.

    20. [20]

      Jacobsen E N. Catalytic asymmetric synthesis[J]. New York: VCH, 1993159.

    21. [21]

      Barone G, Gambino N, Ruggirello A, Silvestri A, Terenzi A, Liveri V T. Spectroscopic study of the interaction of NiⅡ-5-triethyl ammonium methyl salicylidene ortho-phenylendiiminate with native DNA[J]. J. Inorg. Biochem., 2009,103(5):731-737. doi: 10.1016/j.jinorgbio.2009.01.006

    22. [22]

      Gupta S, Mukherjee A, Nethaji M, Chakravarty , A R. An angular trinuclear copper (Ⅱ) complex as a model for the active site of multicopper oxidases[J]. Polyhedron, 2004,23(4):643-647. doi: 10.1016/j.poly.2003.11.001

    23. [23]

      Wood A, Aris W, Brook D J R. Coordinated hydrazone ligands as nucleophiles: Reactions of Fe (papy)2[J]. Inorg. Chem., 2004,43(26):8355-8360. doi: 10.1021/ic0492688

    24. [24]

      Concilio S, Sessa L, Petrone A M, Porta A, Diana R, Iannelli P, Piotto S. Structure modification of an active azo-compound as a route to new antimicrobial compounds[J]. Molecules, 2017,22875. doi: 10.3390/molecules22060875

    25. [25]

      Ghosh K, Kumar P, Tyagi N, Singh U P, Goel N, Chakraborty A, Roy P, Baratto M C. DNA interaction, superoxide scavenging and cytotoxicity studies on new copper (Ⅱ) complexes derived from a tridentate ligand[J]. Polyhedron, 2011,30(16):2667-2677. doi: 10.1016/j.poly.2011.07.019

    26. [26]

      Yusuf T L, Oladipo S D, Zamisa S, Kumalo H M, Lawal I A, Lawal M M, Mabuba N. Design of new Schiff-base copper (Ⅱ) complexes: Synthesis, crystal structures, DFT study, and binding potency toward cytochrome P450 3A4[J]. ACS Omega, 2021,6(21):13704-13718. doi: 10.1021/acsomega.1c00906

    27. [27]

      Kovacic J E. The C=N stretching frequency in the infrared spectra of Schiff's base complexes-Ⅰ. Copper complexes of salicylidene anilines[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 1967,23(1):183-187.

    28. [28]

      Odabaşoğlu M, AlbayrakÇ , Özkanca R, Aykan F Z, Lonecke P. Some polyhydroxy azo-azomethine derivatives of salicylaldehyde: Synthesis, characterization, spectroscopic, molecular structure and antimicrobial activity studies[J]. J. Mol. Struct., 2007,840(1/2/3):71-89.

    29. [29]

      Yang C T, Vetrichelvan M, Yang X D, Moubaraki B, Murray K S, Vittal J J. Syntheses, structural properties and catecholase activity of copper (Ⅱ) complexes with reduced Schiff base N-(2-hydroxybenzyl) amino acids[J]. Dalton Trans., 2004(1):113-121. doi: 10.1039/B310262A

    30. [30]

      Lever A B P. Inorganic electronic spectroscopy. 2nd ed., Amsterdam: Elsevier Science, 1984.

    31. [31]

      Ebrahimi H P, Hadi J S, Abdulnabi Z A, Bolandnazar Z. Spectroscopic, thermal analysis and DFT computational studies of salen-type Schiff base complexes[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2014,117:485-492. doi: 10.1016/j.saa.2013.08.044

    32. [32]

      Elmacı G, Duyar H, Aydıner B, Seferoğlu N, Naziri M A, Şahin E, Seferoğlu Z. The syntheses, molecular structure analyses and DFT studies on new benzil monohydrazone based Schiff bases[J]. J. Mol. Struct., 2018,1162:37-44. doi: 10.1016/j.molstruc.2018.02.035

    33. [33]

      Elmacı G, Aktan E, Seferoğlu N, Hökelek T, Seferoğlu Z. Synthesis, molecular structure and computational study of (Z)-2-((E)-4-nitrobenzylidene) hydrazone)-1, 2-diphenylethan-1-one[J]. J. Mol. Struct., 2015,1099:83-91. doi: 10.1016/j.molstruc.2015.06.041

    34. [34]

      Bouchama A, Yahiaoui M, Chiter C, Setifi Z, Simpson J. Crystal structure of (Z)-2-[(E)-2-benzyl-idene-hydrazin-1-yl-idene]-1, 2-diphenyl-ethanone[J]. Acta Crystallogr. Sect. E, 2015,E71:35-37.

    35. [35]

      Barton J K, Danishefsky A T, Goldberg G M. Tris (phenanthroline) ruthenium (Ⅱ): Stereoselectivity in binding to DNA[J]. J. Am. Chem. Soc., 1984,106(7):2172-2176. doi: 10.1021/ja00319a043

    36. [36]

      Fekri R, Salehi M, Asadi A, Kubicki M. DNA/BSA interaction, bioactivity, molecular docking simulation study and electrochemical properties of hydrazone Schiff base derived Cu (Ⅱ)/Ni (Ⅱ) metal complexes: Influence of the nuclearity and metal ions[J]. Polyhedron, 2017,128:175-187. doi: 10.1016/j.poly.2017.02.047

    37. [37]

      Czarny A, Boykin D W, Wood A A, Nunn C M, Neidle S, Zhao M, Wilson W D. Analysis of van der Waals and electrostatic contributions in the interactions of minor groove binding benzimidazoles with DNA[J]. J. Am. Chem. Soc., 1995,117(16):4716-4717. doi: 10.1021/ja00121a034

    38. [38]

      Benesi H A, Hildebrand J H. A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons[J]. J. Am. Chem. Soc., 1949,71(8):2703-2707. doi: 10.1021/ja01176a030

    39. [39]

      Kathiravan A, Renganathan R. Photoinduced interactions between colloidal TiO 2 nanoparticles and calf thymus-DNA[J]. Polyhedron, 2009,28(7):1374-1378. doi: 10.1016/j.poly.2009.02.040

    40. [40]

      Liu Y X, Mo H W, Lv Z Y, Shen F, Zhang C L, Qi Y Y, Mao Z W, Le X Y. DNA binding, crystal structure, molecular docking studies and anticancer activity evaluation of a copper (Ⅱ) complex[J]. Transit. Met. Chem., 2018,43(3):259-271. doi: 10.1007/s11243-018-0211-y

    41. [41]

      Reihardt C G, Krugh T R. A comparative study of ethidium bromide complexes with dinucleotides and DNA: Direct evidence for intercalation and nucleic acid sequence preferences[J]. Biochemistry, 1978,17(23):4845-4854. doi: 10.1021/bi00616a001

    42. [42]

      Zhao G H, Lin H K, Zhu S R, Sun H W, Chen Y T. Dinuclear palladium (Ⅱ) complexes containing two monofunctional[Pd (en)(pyridine) Cl]+ units bridged by Se or S. Synthesis, characterization, cytotoxicity and kinetic studies of DNA-binding[J]. J. Inorg. Biochem., 1998,70(3/4):219-226.

    43. [43]

      Novakova O, Chen H, Vrana O, Rodger A, Sadler P J, Brabec V. DNA interactions of monofunctional organometallic ruthenium (Ⅱ) antitumor complexes in cell-free media[J]. Biochemistry, 2003,42(39):11544-11554. doi: 10.1021/bi034933u

    44. [44]

      Dimitrakopoulou A, Dendrinou-Samara C, Pantazaki A A, Alexiou M, Nordlander E, Kessissglou D P. Synthesis, structure and interactions with DNA of novel tetranuclear, [Mn4(Ⅱ/Ⅱ/Ⅱ/Ⅳ)] mixed valence complexes[J]. J. Inorg. Biochem., 2008,102(4):618-628. doi: 10.1016/j.jinorgbio.2007.10.005

  • 加载中
    1. [1]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    2. [2]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    3. [3]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    4. [4]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    5. [5]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    6. [6]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

    7. [7]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    8. [8]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    9. [9]

      Wenjuan JinZelong ChenYi WangJiaxuan LiJiahui LiYuxin PeiZhichao Pei . Nano metal-photosensitizer based on Aza-BODIPY-Cu complex for CDT-enhanced dual phototherapy. Chinese Chemical Letters, 2024, 35(7): 109328-. doi: 10.1016/j.cclet.2023.109328

    10. [10]

      Boyuan HuJian ZhangYulin YangYayu DongJiaqi WangWei WangKaifeng LinDebin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933

    11. [11]

      Yuhang Li Yang Ling Yanhang Ma . Application of three-dimensional electron diffraction in structure determination of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100237-100237. doi: 10.1016/j.cjsc.2024.100237

    12. [12]

      Run-Han LiTian-Yi DangWei GuanJiang LiuYa-Qian LanZhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805

    13. [13]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    14. [14]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    15. [15]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    16. [16]

      Tiantian LiRuochen JinBin WuDongming LanYunjian MaYonghua Wang . A novel insight of enhancing the hydrogen peroxide tolerance of unspecific peroxygenase from Daldinia caldariorum based on structure. Chinese Chemical Letters, 2024, 35(4): 108701-. doi: 10.1016/j.cclet.2023.108701

    17. [17]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    18. [18]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    19. [19]

      Luyan ShiKe ZhuYuting YangQinrui LiangQimin PengShuqing ZhouTayirjan Taylor IsimjanXiulin Yang . Phytic acid-derivative Co2B-CoPOx coralloidal structure with delicate boron vacancy for enhanced hydrogen generation from sodium borohydride. Chinese Chemical Letters, 2024, 35(4): 109222-. doi: 10.1016/j.cclet.2023.109222

    20. [20]

      Hui GuMingyue GaoKuan ShenTianli ZhangJunhao ZhangXiangjun ZhengXingmei GuoYuanjun LiuFu CaoHongxing GuQinghong KongShenglin Xiong . F127 assisted fabrication of Ge/rGO/CNTs nanocomposites with three-dimensional network structure for efficient lithium storage. Chinese Chemical Letters, 2024, 35(9): 109273-. doi: 10.1016/j.cclet.2023.109273

Metrics
  • PDF Downloads(0)
  • Abstract views(225)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return