Citation: Qingyan JIANG, Yanyong SHA, Chen CHEN, Xiaojuan CHEN, Wenlong LIU, Hao HUANG, Hongjiang LIU, Qi LIU. Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004 shu

Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries

  • Corresponding author: Qi LIU, liuqi62@163.com
  • Received Date: 3 January 2024
    Revised Date: 1 March 2024

Figures(9)

  • A novel one-dimensional (1D) polycarbonyl coordination polymer [Cu(BGPD)(DMA)(H2O)]·DMA (named Cu-BD, H2BGPD=N, N′-bis(glycinyl)pyromellitic diimide; DMA=dimethylacetamide) was synthesized, and evaluated as a cathode material for lithium - ion batteries (LIBs) for the first time. The electrochemical performance study revealed that the Cu-BD cathode exhibited better cycling stability and a specific capacity of 50 mAh·g-1 after 100 cycles at a current density of 50 mA·g-1. The study of the reaction mechanism for the Cu-BD electrode discloses that both BGPD2- ligands and Cu(Ⅱ) ions may take part in the electron-transfer process during charging and discharging.
  • 加载中
    1. [1]

      Dehghani-Sanij A R, Tharumalingam E, Dusseault M B, Fraser R. Study of energy storage systems and environmental challenges of batteries[J]. Renew. Sust. Energ. Rev., 2019,104:192-208. doi: 10.1016/j.rser.2019.01.023

    2. [2]

      Hannan M A, Hoque M M, Hussain A, Yusof Y, Ker P J. State-of-the-art and energy management system of lithium-ion batteries in electric vehicle applications: Issues and recommendations[J]. IEEE Access, 2018,6:19362-19378. doi: 10.1109/ACCESS.2018.2817655

    3. [3]

      Armand M, Tarascon J M. Building better batteries[J]. Nature, 2008,451(7179):652-657. doi: 10.1038/451652a

    4. [4]

      Chen S S, Zhao D, Chen L, Liu G R, Ding Y, Cao Y L. Emerging intercalation cathode materials for multivalent metal-ion batteries: Status and challenges[J]. Small Struct., 2021,2(11)100082.

    5. [5]

      Whittingham M S. Lithium batteries and cathode materials[J]. Chem. Rev., 2004,104(10):4271-4302. doi: 10.1021/cr020731c

    6. [6]

      Kabir M M, Demirocak D E. Degradation mechanisms in Li-ion batteries: A state-of-the-art review[J]. Int. J. Energy Res., 2017,41(14):1963-1986. doi: 10.1002/er.3762

    7. [7]

      Zeng L C, Huang L C, Zhu J H, Li P P, Chu P K, Wang J H, Yu X F. Phosphorus-based materials for high-performance alkaline metal ion batteries: Progress and prospect[J]. Small, 2022,18(39)2201808. doi: 10.1002/smll.202201808

    8. [8]

      Liang Y L, Dong H, Aurbach D, Yao Y. Current status and future directions of multivalent metal-ion batteries[J]. Nat. Energy, 2020,5(9):646-656. doi: 10.1038/s41560-020-0655-0

    9. [9]

      Liu W, Oh P, Liu X, Lee M J, Cho W, Chae S, Kim Y, Cho J. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries[J]. Angew. Chem. Int. Ed., 2015,54(15):4440-4457. doi: 10.1002/anie.201409262

    10. [10]

      Wang J D, Lakraychi A E, Liu X L, Sieuw L, Morari C, Poizot P, Vlad A. Conjugated sulfonamides as a class of organic lithium-ion positive electrodes[J]. Nat. Mater., 2021,20(5):665-673. doi: 10.1038/s41563-020-00869-1

    11. [11]

      Jouhara A, Dupré1 N, Gaillot A C, Guyomard D, Dolhem F, Poizot P. Raising the redox potential in carboxyphenolate based positive organic materials via cation substitution[J]. Nat. Commun., 2018,94401. doi: 10.1038/s41467-018-06708-x

    12. [12]

      Song Z P, Zhou H S. Towards sustainable and versatile energy storage devices: An overview of organic electrode materials[J]. Energy Environ. Sci., 2013,6(8):2280-2301. doi: 10.1039/c3ee40709h

    13. [13]

      Poizot P, Gaubicher J, Renault S, Dubois L, Liang Y L, Yao Y. Opportunities and challenges for organic electrodes in electrochemical energy storage[J]. Chem. Rev., 2020,120(14):6490-6557. doi: 10.1021/acs.chemrev.9b00482

    14. [14]

      Shen D Z, Chen X J, Chen C, Yang B Z, Jiang Q Y, Su L X, Zhang H P, Liu H J, Liu Q. Building a high-performance organic cathode material containing electron-withdrawing groups for lithium-ion batteries[J]. J. Energy Storage, 2023,64107241. doi: 10.1016/j.est.2023.107241

    15. [15]

      Amin K, Mao L J, Wei Z X. Recent progress in polymeric carbonyl-based electrode materials for lithium and sodium ion batteries[J]. Macromol. Rapid Commun., 2019,40(1)1800565. doi: 10.1002/marc.201800565

    16. [16]

      Iordache A, Delhorbe V, Bardet M, Dubois L, Gutel T, Picard L. Perylene-based all-organic redox battery with excellent cycling stability[J]. ACS Appl. Mater. Interfaces, 2016,8(35):22762-22767. doi: 10.1021/acsami.6b07591

    17. [17]

      Lu Y, Zhang Q, Chen J. Perspectives on the redox chemistry of organic electrode materials in lithium batteries[J]. CCS Chem., 2023,5:1491-1508. doi: 10.31635/ccschem.023.202302740

    18. [18]

      Häupler B, Wild A, Schubert U S. Carbonyls: Powerful organic materials for secondary batteries[J]. Adv. Energy Mater., 2015,5(11)1402034. doi: 10.1002/aenm.201402034

    19. [19]

      Zheng S B, Miao L C, Sun T J, Lin L, Ma T, Bao J Q, Tao Z L, Chen J. An extended carbonyl-rich conjugated polymer cathode for high-capacity lithium-ion batteries[J]. J. Mater. Chem. A, 2021,9(5):2700-2705. doi: 10.1039/D0TA11648C

    20. [20]

      Sun G C, Hu Y, Sha Y Y, Shi C D, Yin G, Zhang H P, Liu H J, Liu Q. An insoluble naphthalenediimide derivative as a highly stable cathode material for lithium-ion batteries[J]. Mater. Chem. Phys., 2019,236121815. doi: 10.1016/j.matchemphys.2019.121815

    21. [21]

      Li Q, Wang H D, Wang H G, Si Z J, Li C P, Bai J. A self-polymerized nitro-substituted conjugated carbonyl compound as high-performance cathode for lithium-organic batteries[J]. ChemSusChem, 2020,13(9):2449-2456. doi: 10.1002/cssc.201903112

    22. [22]

      Zhao B W, Si Y B, Guo W, Fu Y Z. Insoluble naphthoquinone-derived molecular cathode for high-performance lithium organic battery[J]. Adv. Funct. Mater., 2022,32(19)2112225. doi: 10.1002/adfm.202112225

    23. [23]

      Li Q, Li D N, Wang H D, Wang H G, Li Y H, Si Z J, Duan Q. Conjugated carbonyl polymer-based flexible cathode for superior lithium-organic batteries[J]. ACS Appl. Mater. Interfaces, 2019,11(32):28801-28808. doi: 10.1021/acsami.9b06437

    24. [24]

      Lu Y, Hou X S, Miao L C, Li L, Shi R J, Liu L J, Chen J. Cyclohexanehexone with ultrahigh capacity as cathode materials for lithium-ion batteries[J]. Angew. Chem. Int. Ed., 2019,58(21):7020-7024. doi: 10.1002/anie.201902185

    25. [25]

      Mumyatov A V, Shestakov A F, Dremova N N, Stevenson K J, Troshin P A. New naphthalene-based polyimide as an environment-friendly organic cathode material for lithium batteries[J]. Energy Technol., 2019,7(5)1801016. doi: 10.1002/ente.201801016

    26. [26]

      Zhu L M, Ding G C, Xie L L, Cao X Y, Liu J P, Lei X F, Ma J X. Conjugated carbonyl compounds as high-performance cathode materials for rechargeable batteries[J]. Chem. Mater., 2019,31(21):8582-8612. doi: 10.1021/acs.chemmater.9b03109

    27. [27]

      Song Y D, Hu Y, Sha Y Y, Rong H R, Wen H, Liu H J, Liu Q. Graphene oxide linked with N, N'-diamino-1,4,5,8-naphthalenetetracarboxylic bisimide as a stable cathode material for lithium-ion batteries[J]. Ionics, 2019,25(7):2987-2995. doi: 10.1007/s11581-019-02868-y

    28. [28]

      Deng Q J, Luo Z B, Yang R, Li J Z. Toward organic carbonyl-contained small molecules in rechargeable batteries: A review of current modified strategies[J]. ACS Sustain. Chem. Eng., 2020,8(41):15445-15465. doi: 10.1021/acssuschemeng.0c05884

    29. [29]

      An S Y, Schon T B, McAllister B T, Seferos D S. Design strategies for organic carbonyl materials for energy storage: Small molecules, oligomers, polymers and supramolecular structures[J]. EcoMat, 2020,2(4)e12055. doi: 10.1002/eom2.12055

    30. [30]

      Peng H L, Yu Q C, Wang S P, Kim J H, Rowan A E, Nanjundan A K, Yamauchi Y, Yu J X. Molecular design strategies for electrochemical behavior of aromatic carbonyl compounds in organic and aqueous electrolytes[J]. Adv. Sci., 2019,6(17)1900431. doi: 10.1002/advs.201900431

    31. [31]

      Liu S, Peng F, Lin Y, Zhou W J, Huang W W. Structural modification enhances the electrochemical performance for organic cathode materials[J]. Chem. Eng. J., 2023,451(4)139076.

    32. [32]

      Yin J C, Li N, Liu M, Li Z G, Wang X M, Cheng M R, Zhong M, Li W, Xu Y H, Bu X H. Stabilizing redox-active hexaazatriphenylene in a 2D conductive metal-organic framework for improved lithium storage performance[J]. Adv. Funct. Mater., 2023,33(21)2211950. doi: 10.1002/adfm.202211950

    33. [33]

      Shen D Z, Sha Y Y, Chen C, Chen X J, Jiang Q Y, Liu H J, Liu W L, Liu Q. A one-dimensional cobalt-based coordination polymer as a cathode material of lithium-ion batteries[J]. Dalton Trans., 2023,52(21):7079-7087. doi: 10.1039/D3DT00398A

    34. [34]

      Peng Z, Yi X H, Liu Z X, Shang J, Wang D Y. Triphenylamine-based metal-organic frameworks as cathode materials in lithium-ion batteries with coexistence of redox active sites, high working voltage, and high rate stability[J]. ACS Appl. Mater. Interfaces, 2016,8(23):14578-14585. doi: 10.1021/acsami.6b03418

    35. [35]

      Sun X X, Yan X L, Song K M, Zhang T, Yang Z F, Su X, Chen W H, Chen L. A pyrazine-based 2D conductive metal-organic framework for efficient lithium storage[J]. Chin. J. Chem., 2023,41(14):1691-1696. doi: 10.1002/cjoc.202200819

    36. [36]

      Li G H, Yang H, Li F C, Cheng F Y, Shi W, Chen J, Cheng P. A coordination chemistry approach for lithium-ion batteries: The coexistence of metal and ligand redox activities in a one-dimensional metal-organic material[J]. Inorg. Chem., 2016,55(10):4935-4940. doi: 10.1021/acs.inorgchem.6b00450

    37. [37]

      Chang C H, Li A C, Popovs I, Kaveevivitchai W, Chen J L, Chou K C, Kuo T S, Chen T H. Elucidating metal and ligand redox activities of a copper-benzoquinoid coordination polymer as the cathode for lithium-ion batteries[J]. J. Mater. Chem. A, 2019,7(41):23770-23774. doi: 10.1039/C9TA05244E

    38. [38]

      Férey G, Millange F, Morcrette M, Serre C, Doublet M L, Greneche J M, Tarason J M. Mixed-valence Li/Fe-based metal-organic frameworks with both reversible redox and sorption properties[J]. Angew. Chem. Int. Ed., 2007,46(18):3259-3263. doi: 10.1002/anie.200605163

    39. [39]

      Jiang Q, Xiong P X, Liu J J, Xie J, Wang Q C, Yang X Q, Hu E Y, Cao Y, Sun J, Xu Y H, Chen L. A redox-active 2D metal-organic framework for efficient lithium storage with extraordinary high capacity[J]. Angew. Chem. Int. Ed., 2020,59(13):5273-5277. doi: 10.1002/anie.201914395

    40. [40]

      Zhang Z Y, Yoshikawa H, Awaga K. Monitoring the solid-state electrochemistry of Cu(2,7-AQDC) (AQDC=anthraquinone dicarboxylate) in a lithium battery: Coexistence of metal and ligand redox activities in a metal-organic framework[J]. J. Am. Chem. Soc., 2014,136(46):16112-16115. doi: 10.1021/ja508197w

    41. [41]

      Su H Q, Song Y D, Hu Y, Ma Y W, Liu W L, Liu H J, Liu Q. A copper-based polycarbonyl coordination polymer as a cathode for Li ion batteries[J]. Cryst. Growth Des., 2021,21(7):3668-3676. doi: 10.1021/acs.cgd.0c01578

    42. [42]

      Liu J W, Zheng M X, Wu S Y, Zhang L. Design strategies for coordination polymers as electrodes and electrolytes in rechargeable lithium batteries[J]. Coord. Chem. Rev., 2023,483215084. doi: 10.1016/j.ccr.2023.215084

    43. [43]

      SU L X, WANG X M, JIANG Q Y, ZHANG H M, LU Y W, LIU Q. A two-dimensional Co-based coordination polymer[KCo(pa)(OH)]n as the electrode material of supercapacitors with higher-capacity[J]. Chinese J. Inorg. Chem., 2023,39(8):1481-14788.  

    44. [44]

      CHEN X J, RONG H R, YU L L, CHENG M L, SUN G C, LIU Q. A cadmium-based coordination polymer including no solvent as an anode material for Li-ion batteries[J]. Chinese J. Inorg. Chem., 2022,38(7):1367-1374.  

    45. [45]

      Liu J, Xie D X, Xu X F, Jiang L Z, Si R, Shi W, Cheng P. Reversible formation of coordination bonds in Sn-based metal-organic frameworks for high-performance lithium storage[J]. Nat. Commun., 2021,12(1)3131. doi: 10.1038/s41467-021-23335-1

    46. [46]

      Zhang L, Cheng F Y, Shi W, Chen J, Cheng P. Transition-metal-triggered high-efficiency lithium ion storage via coordination interactions with redox-active croconate in one-dimensional metal-organic anode materials[J]. ACS Appl. Mater. Interfaces, 2018,10(7):6398-6406. doi: 10.1021/acsami.7b18758

    47. [47]

      Ke S W, Wang Y, Su J, Liao K, Lv S, Song X, Ma T, Yuan S, Jin Z, Zuo J L. Redox-active covalent organic frameworks with nickel-bis(dithiolene) units as guiding layers for high-performance lithium metal batteries[J]. J. Am. Chem. Soc., 2022,144(18):8267-8277. doi: 10.1021/jacs.2c01996

    48. [48]

      Saravanan K, Nagarathinam M, Balaya P, Vittal J J. Lithium storage in a metal organic framework with diamondoid topology-A case study on metal formates[J]. J. Mater. Chem., 2010,20(38):8329-8335. doi: 10.1039/c0jm01671c

    49. [49]

      Ngue C M, Baskoro F, Wong H Q, Yen H J, Leung M K. Co- and Ni-based electroactive metal-organic frameworks for stable lithium storage: Electrochemical and charge-storage behavior in response to different metal centers[J]. Cryst. Growth Des., 2022,22(10):5872-5882. doi: 10.1021/acs.cgd.2c00354

    50. [50]

      Song Y D, Yu L L, Gao Y R, Shi C D, Cheng M L, Wang X M, Liu H J, Liu Q. One-dimensional zinc-based coordination polymer as a higher capacity anode material for lithium ion batteries[J]. Inorg. Chem., 2017,56(19):11603-11609. doi: 10.1021/acs.inorgchem.7b01441

    51. [51]

      Sun G C, Yu L L, Hu Y, Sha Y Y, Rong H R, Li B L, Liu H J, Liu Q. A manganese-based coordination polymer containing no solvent as a high performance anode in Li-ion batteries[J]. Cryst. Growth Des., 2019,19(11):6503-6510. doi: 10.1021/acs.cgd.9b00962

    52. [52]

      Liu Q, Yu L, Wang Y, Ji Y, Horvat J, Cheng M L, Jia X, Wang G. Manganese-based layered coordination polymer: Synthesis, structural characterization, magnetic property, and electrochemical performance in lithium-ion batteries[J]. Inorg. Chem., 2013,52(6):2817-2822. doi: 10.1021/ic301579g

    53. [53]

      Yan J, Cui Y T, Xie M, Yang G Z, Bin D S, Li D. Immobilizing redox-active tricycloquinazoline into a 2D conductive metal-organic framework for lithium storage[J]. Angew. Chem. Int. Ed., 2021,60(46):24467-24472. doi: 10.1002/anie.202110373

    54. [54]

      Zhou Y, Wu M K, Luo Y L, Pang B C, Su X R, Zhou M J, Han L. Redox active azo-based metal-organic frameworks as anode materials for lithium-ion batteries[J]. New J. Chem., 2019,43(4):1710-1715. doi: 10.1039/C8NJ05014G

    55. [55]

      Guo L Z, Sun J F, Zhang W H, Hou L R, Liang L W, Liu Y, Yuan C Z. Bottom-up fabrication of 1D Cu-based conductive metal-organic framework nanowires as a high-rate anode towards efficient lithium storage[J]. ChemSusChem, 2019,12(22):5051-5058. doi: 10.1002/cssc.201902194

    56. [56]

      Xiang J F, Chang C X, Li M, Wu S M, Yuan L J, Sun J T. A novel coordination polymer as positive electrode material for lithium ion battery[J]. Cryst. Growth Des., 2008,8(1):280-282. doi: 10.1021/cg070386q

    57. [57]

      Tian B B, Ning G H, Gao Q, Tan L M, Tang W, Chen Z X, Su C L, Loh K P. Crystal engineering of naphthalenediimide-based metal-organic frameworks: Structure-dependent lithium storage[J]. ACS Appl. Mater. Interfaces, 2016,8(45):31067-31075. doi: 10.1021/acsami.6b11772

    58. [58]

      Kon K, Uchida K, Fuku K, Yamanaka S, Wu B, Yamazui D, Iguchi H, Kobayashi H, Gambe Y, Honma I, Takaishi S. Electron-conductive metal-organic framework, Fe(dhbq) (dhbq=2, 5-dihydroxy-1, 4-benzoquinone): Coexistence of microporosity and solid-state redox activity[J]. ACS Appl. Mater. Interfaces, 2021,13(32):38188-38193. doi: 10.1021/acsami.1c06571

    59. [59]

      Shimizu T, Wang H, Matsumura D, Mitsuhara K, Ohta T, Yoshikawa H. Porous metal-organic frameworks containing reversible disulfide linkages as cathode materials for lithium-ion batteries[J]. ChemSusChem, 2020,13(9):2256-2263. doi: 10.1002/cssc.201903471

    60. [60]

      Song Z P, Qian Y M, Gordin M L, Tang D H, Xu T, Otani M, Zhan H, Zhou H S, Wang D H. Polyanthraquinone as a reliable organic electrode for stable and fast lithium storage[J]. Angew. Chem. Int. Ed., 2015,54(47):13947-13951. doi: 10.1002/anie.201506673

    61. [61]

      Barooah N, Sarma R J, Batsanov A S, Baruah J B. Structural aspects of adducts of N-phthaloylglycine and its derivatives[J]. J. Mol. Struct., 2006,791(1/2/3):122-130.

    62. [62]

      Rong H R, Gao G X, Liu X C, Chen X J, Jiang Q Y, Song X T, Shen D Z, Liu W L, Liu Q. Asymmetric supercapacitor based on a 1D Cu-coordination polymer with high cycle stability[J]. Cryst. Growth Des., 2023,23(8):5437-5445. doi: 10.1021/acs.cgd.2c01305

    63. [63]

      Hong J, Wang C S, Kasavajjula U. Kinetic behavior of LiFeMgPO4 cathode material for Li-ion batteries[J]. J. Power Sources, 2006,162(2):1289-1296. doi: 10.1016/j.jpowsour.2006.08.004

    64. [64]

      Kaspar J, Graczyk-Zajac M, Riedel R. Determination of the chemical diffusion coefficient of Li-ions in carbon-rich silicon oxycarbide anodes by electro-analytical methods[J]. Electrochim. Acta, 2014,115:665-670. doi: 10.1016/j.electacta.2013.10.184

    65. [65]

      Reddy M V, Jose R, Viet A L, Ozoemena K I, Chowdari B V R, Ramakrishna S. Studies on the lithium ion diffusion coefficients of electrospun Nb2O5 nanostructures using galvanostatic intermittent titration and electrochemical impedance spectroscopy[J]. Electrochim. Acta, 2014,128:198-202. doi: 10.1016/j.electacta.2013.10.003

    66. [66]

      Shi G Y, Xu W, Wang J C, Yuan Y, Chaemchuen S, Verpoort F. A Cu-based MOF for the effective carboxylation of terminal alkynes with CO2 under mild conditions[J]. J. CO2 Util., 2020,39101177. doi: 10.1016/j.jcou.2020.101177

    67. [67]

      Gu S N, Bai Z W, Majumder S, Huang B L, Chen G H. Conductive metal-organic framework with redox metal center as cathode for high rate performance lithium ion battery[J]. J. Power Sources, 2019,429:22-29. doi: 10.1016/j.jpowsour.2019.04.087

  • 加载中
    1. [1]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    2. [2]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    3. [3]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    4. [4]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    5. [5]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    6. [6]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    7. [7]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    8. [8]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

    9. [9]

      Haixia WuKailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550

    10. [10]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

    11. [11]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    12. [12]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    13. [13]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    14. [14]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    15. [15]

      Jingxuan LiuShiqi ZhaoXiang Wu . Flexible electrochemical capacitor based NiMoSSe electrode material with superior cycling and structural stability. Chinese Chemical Letters, 2024, 35(7): 109059-. doi: 10.1016/j.cclet.2023.109059

    16. [16]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    17. [17]

      Chang LiuZirui SongXinglan DengShihong XuRenji ZhengWentao DengHongshuai HouGuoqiang ZouXiaobo Ji . Interfacial/bulk synergetic effects accelerating charge transferring for advanced lithium-ion capacitors. Chinese Chemical Letters, 2024, 35(6): 109081-. doi: 10.1016/j.cclet.2023.109081

    18. [18]

      Xiping DongXuan WangZhixiu LuQinhao ShiZhengyi YangXuan YuWuliang FengXingli ZouYang LiuYufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605

    19. [19]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    20. [20]

      Mei-Chen LiuQing-Song LiuYi-Zhou QuanJia-Ling YuGang WuXiu-Li WangYu-Zhong Wang . Phosphorus-silicon-integrated electrolyte additive boosts cycling performance and safety of high-voltage lithium-ion batteries. Chinese Chemical Letters, 2024, 35(8): 109123-. doi: 10.1016/j.cclet.2023.109123

Metrics
  • PDF Downloads(0)
  • Abstract views(81)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return