Citation: Jiakun BAI, Ting XU, Lu ZHANG, Jiang PENG, Yuqiang LI, Junhui JIA. A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002 shu

A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid

Figures(10)

  • An optical probe (3) with a donor-π-acceptor (D-π-A) structure for the detection of hypochlorous acid (HClO) was synthesized by a one-step reaction. It employed a barbituric acid derivative as the electron acceptor and 4-(dimethylamino)cinnamaldehyde as the electron donor. The probe exhibited high sensitivity and selectivity for the detection of HClO, rapidly responding with distinct colorimetric and fluorescent "on-off" signals (about 15 s). The probe displayed a linear relationship between fluorescence intensity and HClO concentration, with a low detection limit (LOD) of 14 nmol·L-1, which made it suitable for quantitative HClO detection. Moreover, the probe exhibited red light emission (628 nm) with a significant Stokes shift (158 nm) and good photostability, which provided advantages for its application in cell imaging. The proposed reaction mechanism, which was deduced from high-resolution mass spectrometry data, involved electrophilic addition and oxidative cleavage of the C=C bond by ClO-, which led to the disruption of the probe′s D-π-A structure. Consequently, this effectively halted the intramolecular charge transfer (ICT) process of the probe. MTT cytotoxicity assays demonstrated minimal toxicity of the probe following 12, 24, and 48 h of incubation with HepG2 cells. The probe was successfully applied to living cell imaging and enabled the detection of HClO via fluorescence quenching within the living cellular milieu.
  • 加载中
    1. [1]

      Yang B W, Chen Y, Shi J L. Reactive oxygen species (ROS)-based nanomedicine[J]. Chem. Rev., 2019,119(8):4881-4985. doi: 10.1021/acs.chemrev.8b00626

    2. [2]

      Heyne B, Ahmed S, Scaiano J C. Mechanistic studies of fluorescent sensors for the detection of reactive oxygen species[J]. Org. Biomol. Chem., 2008,6(2):354-358. doi: 10.1039/B713575K

    3. [3]

      Wang S H, Han M Y, Huang D J. Nitric oxide switches on the photoluminescence of molecularly engineered quantum dots[J]. J. Am. Chem. Soc., 2009,131(33):11692-11694. doi: 10.1021/ja904824w

    4. [4]

      Koide Y, Urano Y, Hanaoka K, Terai T, Nagano T. Development of an Si-rhodamine-based far-red to near-infrared fluorescence probe selective for hypochlorous acid and its applications for biological imaging[J]. J. Am. Chem. Soc., 2011,133(15):5680-5682. doi: 10.1021/ja111470n

    5. [5]

      Özyürek M, Bekdeşer B, Güçlü K, Apak R. Resorcinol as a spectrofluorometric probe for the hypochlorous acid scavenging activity assay of biological samples[J]. Anal. Chem., 2012,84(21):9529-9536. doi: 10.1021/ac302369p

    6. [6]

      Xiao Y N, Zhang R, Ye Z Q, Dai Z C, An H Y, Yuan J L. Lanthanide complex-based luminescent probes for highly sensitive time-gated luminescence detection of hypochlorous acid[J]. Anal. Chem., 2012,84(24):10785-10792. doi: 10.1021/ac3028189

    7. [7]

      Liu S R, Vedamalai M, Wu S P. Hypochlorous acid turn-on boron dipyrromethene probe based on oxidation of methyl phenyl sulfide[J]. Anal. Chim. Acta, 2013,800:71-76. doi: 10.1016/j.aca.2013.09.018

    8. [8]

      Park J, Kim H, Choi Y, Kim Y. A ratiometric fluorescent probe based on a BODIPY-DCDHF conjugate for the detection of hypochlorous acid in living cells[J]. Analyst, 2013,138(12):3368-3371. doi: 10.1039/c3an36820c

    9. [9]

      Pattison D I, Davies M J. Evidence for rapid inter- and intramolecular chlorine transfer reactions of histamine and carnosine chloramines:   implications for the prevention of hypochlorous-acid-mediated damage[J]. Biochemistry, 2006,45(26):8152-8162. doi: 10.1021/bi060348s

    10. [10]

      Ashton T D, Jolliffe K A, Pfeffer F M. Luminescent probes for the bioimaging of small anionic species in vitro and in vivo[J]. Chem. Soc. Rev., 2015,44(14):4547-4595. doi: 10.1039/C4CS00372A

    11. [11]

      Zhang C, Sun Y T, Gan S, Ren A, Milaneh S, Xiang D J, Wang W L. Recent progress of organic fluorescent molecules for bioimaging applications: Cancer-relevant biomarkers[J]. J. Mater. Chem. C, 2023,11:16859-16889. doi: 10.1039/D3TC03664B

    12. [12]

      Ji X T, Wang N, Wang J K, Wang T, Huang X, Hao H X. Non‑ destructive real-time monitoring and investigation of the self-assembly process using fluorescent probes[J]. Chem. Sci., 2024,15:3800-3830. doi: 10.1039/D3SC06527H

    13. [13]

      Chen G, Xu J, Ma S Y, Ji X R, Carney J B. , Wang C, Gao X Y, Chen P, Fan B L, Chen J, Yue Y F, James T D[J]. Visual monitoring of biocatalytic processes using small molecular fluorescent probes: Strategies-mechanisms-applications. Chem. Commun., 2024,60:2716-2731.

    14. [14]

      YU Q, CHEN X L, LIU H, ZHANG Q L. Recent progress in colorimetric and fluorimetric probes for the detection of hypochlorous acid[J]. Chin. J. Org. Chem., 2020,40(5):1206-1231.

    15. [15]

      Hu J J, Wong N K, Lu M Y, Chen X M, Ye S, Zhao A Q, Gao P, Kao R Y T, Shen J G, Yang D. HKOCl-3: A fluorescent hypochlorous acid probe for live-cell and in vivo imaging and quantitative application in flow cytometry and a 96-well microplate assay[J]. Chem. Sci., 2016,7:2094-2099. doi: 10.1039/C5SC03855C

    16. [16]

      Wei P, Yuan W, Xue F F, Zhou W, Li R H, Zhang D T, Yi T. Deformylation reaction-based probe for in vivo imaging of HOCl[J]. Chem. Sci., 2018,9:495-501. doi: 10.1039/C7SC03784H

    17. [17]

      Chen W, Xu S, Day J J, Wang D F, Xian M. A general strategy for development of near-infrared fluorescent probes for bioimaging[J]. Angew. Chem. Int. Ed., 2017,56(52):16611-16615. doi: 10.1002/anie.201710688

    18. [18]

      Bai J K, Peng J, Xu T, Bu M, Chen W, Nie Y J, Jia J H. A tetraphenylethene-based Schiff base AIEgen with a large Stokes shift as probe for highly sensitive and selective detection of aqueous Cu2+ ions and its application in cell imaging[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2023,290122190. doi: 10.1016/j.saa.2022.122190

    19. [19]

      QIU L, JI Y F, ZHU C C, CHEN Y C, HE W J, GUO Z J. A BODIPY-derived Zn2+ fluorescent sensor: The enhanced ICT effect[J]. Chinese J. Inorg. Chem., 2014,30(1):169-178.  

    20. [20]

      LIU C, SUN H, YANG X L, HE W J. A new benzothiazole-derived pH fluorescent sensor of large Stokes shift[J]. Chinese J. Inorg. Chem., 2011,27(11):2121-2127.  

    21. [21]

      ZHANG G Q, YIN C X. Application of fluorescent probe based on dicyanoisophorone in detection of thiophenol[J]. Chinese J. Inorg. Chem., 2021,37(7):1245-1250.  

    22. [22]

      Sonkaya Ö, Soylukan C, Algi M P, Algi F. Aza-BODIPY-based fluorescent and colorimetric sensors and probes[J]. Curr. Org. Synth., 2023,20(1):20-60. doi: 10.2174/1570179419666220216123033

    23. [23]

      Jiang Q, Wang Z L, Li M X, Song J, Yang Y Q, Xu X, Xu H J, Wang S F. A novel nopinone-based fluorescent probe for colorimetric and ratiometric detection of hypochlorite and its applications in water samples and living cells[J]. Analyst, 2020,145(3):1033-1040. doi: 10.1039/C9AN01981B

    24. [24]

      Shafiq N, Arshad U, Zarren G, Parveen S, Javed I, Ashraf A. A comprehensive review: Bio-potential of barbituric acid and its analogues[J]. Curr. Org. Chem., 2020,24(2):129-161. doi: 10.2174/1385272824666200110094457

    25. [25]

      Bhattacharyya A, Makhal S C, Guchhait N. Comparative photophysical study of differently substituted cinnamaldehyde-based chalcones: From intramolecular charge transfer to fluorogenic solvent selectivity[J]. J. Phys. Chem. A, 2019,123(30):6411-6419. doi: 10.1021/acs.jpca.9b03437

    26. [26]

      Zhang Z, Fan J L, Cheng G H, Ghazali S, Du J J, Peng X J. Fluorescence completely separated ratiometric probe for HClO in lysosomes[J]. Sens. Actuator B-Chem., 2017,246:293-299. doi: 10.1016/j.snb.2017.02.081

    27. [27]

      Sun M T, Yu H, Zhu H J, Ma F, Zhang S, Huang D J, Wang S H. Oxidative cleavage-based near-infrared fluorescent probe for hypochlorous acid detection and myeloperoxidase activity evaluation[J]. Anal. Chem., 2014,86(1):671-677. doi: 10.1021/ac403603r

    28. [28]

      Zhang Y Y, Chen X Z, Liu X Y, Zhang X Y, Gao G, Hou S C, Wang H M. A highly selective and ultrafast near-infrared fluorescent turn-on and colorimetric probe for hypochlorite in living cells[J]. Anal. Chim. Acta, 2019,1078:135-141. doi: 10.1016/j.aca.2019.06.014

  • 加载中
    1. [1]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    2. [2]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    3. [3]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    4. [4]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    5. [5]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    6. [6]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    7. [7]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    8. [8]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    9. [9]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    10. [10]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    11. [11]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    12. [12]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    13. [13]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

Metrics
  • PDF Downloads(1)
  • Abstract views(95)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return