Citation: Lu LIU, Huijie WANG, Haitong WANG, Ying LI. Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489 shu

Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline

Figures(14)

  • A Cd(Ⅱ) complex, formulated as {(H2dbim)0.5[Cd(Hbptc)]·H2O}n (1), where dbim=1-(4-((2, 6-dimethyl-2H-benzo[d]imidazol-3(3H)-yl)methyl)benzyl)-2, 7-dihydro-2, 5-dimethyl-1H-benzo[d]imidazole, H4bptc=3, 3', 4, 4'-benzophenone tetracarboxylic acid, has been obtained by hydrothermal reactions and structurally characterized. Complex 1 exhibits a 2D layer with a point symbol of {44·66}. Complex 1 was used for fluorescence identification of some common environmental pollutants. The result of the research shows that complex 1 can effectively detect p-nitrophenol, tetracycline, and 2, 6-dichloro-4-nitroaniline. The calculated quenching constants for p-nitrophenol, tetracycline, and 2, 6-dichloro-4-nitroaniline were 2×102, 5.4×104, and 2×104 L·mol-1, respectively.
  • 加载中
    1. [1]

      Wang Y B, Wu P, Wang Y N, He H, Huang L Z. Dendritic mesoporous nanoparticles for the detection, adsorption, and degradation of hazardous substances in the environment: State-of-the-art and future prospects[J]. J. Environ. Manage., 2023,345118629. doi: 10.1016/j.jenvman.2023.118629

    2. [2]

      Wan K J, Satyanarayana M, Surendar T. Magnetically responsive SnFe2O4/g-C3N4 hybrid photocatalysts with remarkable visible-light-induced performance for degradation of environmentally hazardous substances and sustainable hydrogen production[J]. Appl. Surf. Sci., 2020,506144939. doi: 10.1016/j.apsusc.2019.144939

    3. [3]

      Mario C, Elza B. New trajectories of technologies for the removal of pollutants and emerging contaminants in the environment[J]. Environ. Res., 2023,229115938. doi: 10.1016/j.envres.2023.115938

    4. [4]

      Raynard C S, You S J, Wang Y F. Degradation of contaminants in plasma technology: An overview[J]. J. Hazard. Mater., 2022,424127390. doi: 10.1016/j.jhazmat.2021.127390

    5. [5]

      Su H L, Azadeh N, Liu D, Rashid M, Charles C S, Li J L. Degradation of phenolic pollutants by persulfate-based advanced oxidation processes: Metal and carbon-based catalysis[J]. Rev. Chem. Eng., 2023,39(8):1269-1298. doi: 10.1515/revce-2022-0037

    6. [6]

      Zhao X X, Liu Y Q, Zhu Q M, Gong W T. Catechol-based porous organic polymers for effective removal of phenolic pollutants from water[J]. Polymers, 2023,15(11)2565. doi: 10.3390/polym15112565

    7. [7]

      Olalla G S, Pablo B S, Bego a G, ngeles D. Removal of phenolic pollutants from wastewater streams using ionic liquids[J]. Sep. Purif. Technol., 2020,236116310. doi: 10.1016/j.seppur.2019.116310

    8. [8]

      Cao T T, Xu T F, Deng F X, Qiao W W, Cui C W. Reactivity and mechanism between OH and phenolic pollutants: Efficiency and DFT calculation[J]. J. Photochem. Photobiol. A, 2021,407113025. doi: 10.1016/j.jphotochem.2020.113025

    9. [9]

      Wang H W, Zhang C, Wang Y N, Sun Y J, Fu Y X, Gong Z G, Liu K Q. Simultaneous degradation of refractory organics, antibiotics and antibiotic resistance genes from landfill leachate concentrate by GAC/O3[J]. J. Clean. Prod., 2022,380135016. doi: 10.1016/j.jclepro.2022.135016

    10. [10]

      Sandra B, Lidija Ć, Davor L, Mirta Č. TiO2 assisted photocatalytic degradation of macrolide antibiotics[J]. Curr. Opin. Green Sust., 2017,6:34-41. doi: 10.1016/j.cogsc.2017.05.004

    11. [11]

      Leder C, Suk M, Lorenz S, Rastogi T, Peifer C, Kietzmann M, Jonas D, Buck M, Pahl A, Kümmerer A. Reducing environmental pollution by antibiotics through design for environmental degradation[J]. ACS Sustain. Chem. Eng., 2021,9(28):9358-9368. doi: 10.1021/acssuschemeng.1c02243

    12. [12]

      Wu S Q, Hu Y H. A comprehensive review on catalysts for electrocatalytic and photoelectrocatalytic degradation of antibiotics[J]. Chem. Eng. J., 2021,409127739. doi: 10.1016/j.cej.2020.127739

    13. [13]

      Banjar M F, Abedin F N J, Fizal A N S, Sarih N M, Hossain M S, Osman H, Khalil N A, Yahaya A N A, Zulkifli M. Synthesis and characterization of a novel nanosized polyaniline[J]. Polymers, 2023,15(23)4565. doi: 10.3390/polym15234565

    14. [14]

      Lu S L, Zhao B, Chen M X, Wang L, Fu X Z, Luo J L. Electrolysis of waste water containing aniline to produce polyaniline and hydrogen with low energy consumption[J]. Int. J. Hydrog. Energy, 2020,45(43):22419-22426. doi: 10.1016/j.ijhydene.2020.06.116

    15. [15]

      Li Z, Zhu M S. Detection of pollutants in water bodies: Electrochemical detection or photo-electrochemical detection?[J]. Chem. Commun., 2020,56:14541-14552. doi: 10.1039/D0CC05709F

    16. [16]

      HUANG Y, ZHAO N J, MENG D S, ZUO Z L, WANG X, MA M J, YANG R F, YIN G F, LIU J G, LIU W Q. Advance in the detection techniques of persistent organic pollutants by using fluorescence spectrometry[J]. Spectrosc. Spectr. Anal., 2017,39(7):2107-2113.  

    17. [17]

      Imran A, Mohd S, Omar M, Iqbal H. Advances in sample preparation in chromatography for organic environmental pollutants analyses[J]. J. Liq. Chromatogr. Relat. Technol., 2019,42(5):137-160.

    18. [18]

      Guo Y M, Zhang Y J, Li T, Tao T. ZnO quantum dots for fluorescent detection of environmental contaminants[J]. J. Environ. Chem. Eng., 2021,9(6)106800. doi: 10.1016/j.jece.2021.106800

    19. [19]

      Claudio P, Fabio M, Nello M, Giovanni T, Andrei D. Application of metal-organic frameworks[J]. Polym. Int., 2017,66(6):731-744. doi: 10.1002/pi.5315

    20. [20]

      Chen Z M, Li X L, Yang C Q, Cheng K P, Tan T W, Lv Y Q, Liu Y. Hybrid porous crystalline materials from metal organic frameworks and covalent organic frameworks[J]. Adv. Sci., 2021,8(20)2101883. doi: 10.1002/advs.202101883

    21. [21]

      WANG X Q, MA X H, FENG D D, TANG J, WU D. Synthesis of a water-stable Zn(Ⅱ)-based metal-organic framework for luminescence detecting Fe3+ and 2, 6-dichloro-4-nitroaniline[J]. Chinese J. Inorg. Chem., 2022,38(1):137-144.  

    22. [22]

      WANG G F, SUN S W, SONG S F, LÜ M. Synthesis of a Cd(Ⅱ)-based coordination polymer for luminescence detecting 2, 4, 6-trinitrophenol[J]. Chinese J. Inorg. Chem., 2023,39(12):2407-2414.

    23. [23]

      ZHAO P R, LIU Y Q, HE C, DUAN C Y. A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene[J]. Chinese J. Inorg. Chem., 2024,40(4):713-724.  

    24. [24]

      Wu Z F, Huang X Y. A mechanoresponsive fluorescent mg-zn bimetallic MOF with luminescent sensing properties[J]. ChemistrySelect, 2018,3(17):4884-4888.

    25. [25]

      Liu Q Q, Yue K F, Weng X J, Wang Y Y. Luminescence sensing and supercapacitor performances of a new (3, 3)-connected Cd-MOF[J]. CrystEngComm, 2019,21(41):6186-6195.

    26. [26]

      Bronisz R. 1, 4-Di(1, 2, 3-triazol-1-yl) butane as building block for the preparation of the iron(Ⅱ) spin-crossover 2D coordination polymer[J]. Inorg. Chem., 2005,44:4463-4465.

    27. [27]

      Sheldrick G M. A short history of SHELX[J]. Acta Crystallogr. Sect. A, 2008,A64:112-122.

  • 加载中
    1. [1]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    2. [2]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    3. [3]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    4. [4]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    5. [5]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    6. [6]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    7. [7]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    8. [8]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    9. [9]

      Yuhang Li Yang Ling Yanhang Ma . Application of three-dimensional electron diffraction in structure determination of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100237-100237. doi: 10.1016/j.cjsc.2024.100237

    10. [10]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    11. [11]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    12. [12]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    13. [13]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    14. [14]

      Run-Han LiTian-Yi DangWei GuanJiang LiuYa-Qian LanZhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805

    15. [15]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    16. [16]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    17. [17]

      Tiantian LiRuochen JinBin WuDongming LanYunjian MaYonghua Wang . A novel insight of enhancing the hydrogen peroxide tolerance of unspecific peroxygenase from Daldinia caldariorum based on structure. Chinese Chemical Letters, 2024, 35(4): 108701-. doi: 10.1016/j.cclet.2023.108701

    18. [18]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    19. [19]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

    20. [20]

      Luyan ShiKe ZhuYuting YangQinrui LiangQimin PengShuqing ZhouTayirjan Taylor IsimjanXiulin Yang . Phytic acid-derivative Co2B-CoPOx coralloidal structure with delicate boron vacancy for enhanced hydrogen generation from sodium borohydride. Chinese Chemical Letters, 2024, 35(4): 109222-. doi: 10.1016/j.cclet.2023.109222

Metrics
  • PDF Downloads(0)
  • Abstract views(55)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return