Citation: Gaofeng WANG, Shuwen SUN, Yanfei ZHAO, Lixin MENG, Bohui WEI. Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479 shu

Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone

  • Corresponding author: Gaofeng WANG, wgf1979@126.com
  • Received Date: 19 December 2023
    Revised Date: 9 March 2024

Figures(9)

  • Three zinc coordination polymers, {[Zn2(bipmo)2(ipa)2]·3H2O}n (1), {[Zn(bipmo)(5-OH-ipa)]·DMA·H2O}n (2), and {[Zn(bipmo)(5-Me-ipa)]·H2O}n (3), where bipmo=bis(4-(1H-imidazol-1-yl)phenyl)methanone, H2ipa=isophthalic acid, 5-OH-ipaH2=5-hydroxyisophthalic acid, 5-Me-ipaH2=5-methylisophthalic acid, were synthesized under solvothermal conditions. These complexes have been characterized by elemental analyses, IR spectra, single-crystal X-ray diffraction, etc. Complex 1 shows a 2D 2-fold interpenetrating {44·62} network. Complex 2 displays a 2D uninodal framework with the {65·8} topology. Complex 3 reveals a 2D layer structure with {63} topology. The results indicate that the presence of a 5-substituted group in the isophthalate exerts a significant influence on the formation of the final structures. The luminescent properties of the complexes in the solid state have also been studied.
  • 加载中
    1. [1]

      Dutta A, Singh A, Wang X X, Kumar A, Liu J Q. Luminescent sensing of nitroaromatics by crystalline porous materials[J]. CrystEngComm, 2020,22:7736-7781. doi: 10.1039/D0CE01087A

    2. [2]

      Yang L F, Qian S H, Wang X B, Cui X L, Chen B L, Xing H B. Energy-efficient separation alternatives: Metal-organic frameworks and membranes for hydrocarbon separation[J]. Chem. Soc. Rev., 2020,49:5359-5406. doi: 10.1039/C9CS00756C

    3. [3]

      KANG X Q, WANG J H, GU J Z. Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), nickel(Ⅱ) and cobalt(Ⅱ) coordination polymers constructed from 4,4'-(pyridin-3,5-diyl)dibenzoic acid[J]. Chinese J. Inorg. Chem., 2023,39(12):2385-2392. doi: 10.11862/CJIC.2023.190

    4. [4]

      Rao K P, Higuchi M, Duan J, Kitagawa S. pH-Dependent interpenetrated, polymorphic, Cd2+- and BTB-based porous coordination polymers with open metal sites[J]. Cryst. Growth Des., 2013,13:981-985. doi: 10.1021/cg301476p

    5. [5]

      XIA Y P, WANG C X, ZHENG J Y, LI N, CHANG Z, BU X H. Construction of a Fe-MOF based on carbazole-carboxylate ligand for CO2/CH4 separation[J]. Chem. J. Chinese Universities, 2020,41(11):2415-2420.  

    6. [6]

      Zhao Z H, Huang J R, Liao P Q, Chen X M. Highly efficient electroreduction of CO2 to ethanol via asymmetric C—C coupling by a metal-organic framework with heterodimetal dual sites[J]. J. Am. Chem. Soc., 2023,145:26783-26790. doi: 10.1021/jacs.3c08974

    7. [7]

      Mu Y J, Ran Y G, Zhang B B, Du J L, Jiang C Y, Du J. Dicarboxylate ligands modulated structural diversity in the construction of Cd(Ⅱ) coordination polymers built from N-heterocyclic ligand: Synthesis, structures, and luminescent sensing[J]. Cryst. Growth Des., 2020,20:6030-6043. doi: 10.1021/acs.cgd.0c00739

    8. [8]

      Wang G F, Zhang X, Sun S W, Sun H, Yang X, Li H, Yao C Z, Sun S G, Tang Y P, Meng L X. Syntheses, crystal structures, and characterization of two Mn(Ⅱ) coordination polymers with bis(4-(1H-imidazol-1-yl)phenyl)methanone ligands[J]. Z. Naturforsch. B, 2016,71:869-874.

    9. [9]

      Wang G F. Structural diversity of two coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone and polycarboxylate coligands: Syntheses, structures, and fluorescent properties[J]. Russ. J. Coord. Chem., 2018,44:540-546. doi: 10.1134/S1070328418090075

    10. [10]

      WANG G F, SUN S W, SONG S F, LÜ M. Synthesis of a Cd(Ⅱ)-based coordination polymer for luminescence detecting 2,4,6-trinitrophenol[J]. Chinese J. Inorg. Chem., 2023,39(12):2407-2414.

    11. [11]

      CrysAlisPro, Version 1.171.35.19. Agilent Technologies Inc., Santa Clara, CA, USA, 2011.

    12. [12]

      Sheldrick G M. SHELXL 2014/7, Program for crystal structure refinement. University of Gö ttingen, Germany, 2014.

    13. [13]

      Sheldrick G M. A short history of SHELX[J]. Acta Crystallogr. Sect. A, 2008(A64):112-122.

    14. [14]

      Blatov V A. Multipurpose crystallochemical analysis with the program package TOPOS. [2023-11-03]. https://www.iucr.org/resources/commissions/crystallographic-computing/newsletters/7/topos

    15. [15]

      Wang C F, Yao Z S, Yang G Y, Tao J. Ligand substituent effects on the spin-crossover behaviors of dinuclear iron(Ⅱ) compounds[J]. Inorg. Chem., 2019,58:1309-1316. doi: 10.1021/acs.inorgchem.8b02789

    16. [16]

      Minnick J L, Raincrow J, Meinders G, Latifi R, Tahsini L. Synthesis, characterization, and spectroscopic studies of 2,6-dimethylpyridyl-linked Cu(Ⅰ)-CNC complexes: the electronic influence of aryl wingtips on copper centers[J]. Inorg. Chem., 2023,62:15912-15926. doi: 10.1021/acs.inorgchem.3c01973

    17. [17]

      He X, Lu C Z, Yuan D Q. Two 3D porous cadmium tetrazolate frameworks with hexagonal tunnels[J]. Inorg. Chem., 2006,45:5760-5766. doi: 10.1021/ic0520162

    18. [18]

      Ouellette W, Hudson B S, Zubieta J. Hydrothermal and structural chemistry of the zinc(Ⅱ)- and cadmium(Ⅱ)-1,2,4-triazolate systems[J]. Inorg. Chem., 2007,46:4887-4904. doi: 10.1021/ic062269a

    19. [19]

      Song X Z, Zhao L, Zhang N, Liu L, Ren X, Ma H M, Luo C N, Li Y Y, Wei Q. Zinc-based metal-organic framework with MLCT properties as an efficient electrochemiluminescence probe for trace detection of trenbolone[J]. Anal. Chem., 2022,94:14054-14060. doi: 10.1021/acs.analchem.2c03615

    20. [20]

      Zhang Y, Liu Y H, Huo F, Zhang B W, Su W Z, Yang X P. Photoluminescence quenching in recyclable water-soluble Zn-based metal-organic framework nanoflakes for dichromate sensing[J]. ACS Appl. Nano Mater., 2022,5:9223-9229. doi: 10.1021/acsanm.2c01556

  • 加载中
    1. [1]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    2. [2]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    3. [3]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    4. [4]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    5. [5]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    6. [6]

      Jun GuoZhenbang ZhuangWanqiang LiuGang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803

    7. [7]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    8. [8]

      Mengjun SunZhi WangJvhui JiangXiaobing WangChuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393

    9. [9]

      Yunyu ZhaoChuntao YangYingjian Yu . A review on covalent organic frameworks for rechargeable zinc-ion batteries. Chinese Chemical Letters, 2024, 35(7): 108865-. doi: 10.1016/j.cclet.2023.108865

    10. [10]

      Jiakun Bai Junhui Jia Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323

    11. [11]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    12. [12]

      Yajun HouChuanzheng ZhuQiang WangXiaomeng ZhaoKun LuoZongshuai GongZhihao Yuan . ~2.5 nm pores in carbon-based cathode promise better zinc-iodine batteries. Chinese Chemical Letters, 2024, 35(5): 108697-. doi: 10.1016/j.cclet.2023.108697

    13. [13]

      Jie ZhouQuanyu LiXiaomeng HuWeifeng WeiXiaobo JiGuichao KuangLiangjun ZhouLibao ChenYuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143

    14. [14]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    15. [15]

      Jiayu BaiSongjie HuLirong FengXinhui JinDong WangKai ZhangXiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326

    16. [16]

      Ningning ZhaoYuyan LiangWenjie HuoXinyan ZhuZhangxing HeZekun ZhangYoutuo ZhangXianwen WuLei DaiJing ZhuLing WangQiaobao Zhang . Separator functionalization enables high-performance zinc anode via ion-migration regulation and interfacial engineering. Chinese Chemical Letters, 2024, 35(9): 109332-. doi: 10.1016/j.cclet.2023.109332

    17. [17]

      Shaojie Ding Henan Wang Xiaojing Dai Yuru Lv Xinxin Niu Ruilian Yin Fangfang Wu Wenhui Shi Wenxian Liu Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302

    18. [18]

      Xiaoxing JiXiaojuan LiChenggang WangGang ZhaoHongxia BuXijin Xu . NixB/rGO as the cathode for high-performance aqueous alkaline zinc-based battery. Chinese Chemical Letters, 2024, 35(10): 109388-. doi: 10.1016/j.cclet.2023.109388

    19. [19]

      Zixu XiePengfei ZhangZiyao ZhangChen ChenXing Wang . The choice of antimicrobial polymers: Hydrophilic or hydrophobic?. Chinese Chemical Letters, 2024, 35(9): 109768-. doi: 10.1016/j.cclet.2024.109768

    20. [20]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

Metrics
  • PDF Downloads(0)
  • Abstract views(72)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return