Citation: Min WANG, Dehua XIN, Yaning SHI, Wenyao ZHU, Yuanqun ZHANG, Wei ZHANG. Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477 shu

Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction

  • Corresponding author: Min WANG, sustwangmin@163.com
  • Received Date: 18 December 2023
    Revised Date: 26 March 2024

Figures(9)

  • The multilevel Ag/Bi/Nv-g-C3N4/Ti3C2Tx (Nv-g-C3N4: nitrogen vacancy-g-C3N4) Schottky junction was prepared via an in-situ solvothermal reaction. The phase composition and crystal structure, micromorphology and pore structure, surface elemental composition and chemical state, and optical and photoelectrochemical properties were characterized. The prepared Ag/Bi/Nv-g-C3N4/Ti3C2Tx exhibited full-spectrum absorption characteristics owing to the synergistic surface plasmon resonance effect between Ag, Bi, and Ti3C2Tx. Moreover, the Schottky junction was formed through the interface polarization charge transfer driven by carrier concentration difference, resulting in the markedly improved separation efficiency and utilization of photogenerated carriers (including hot electrons and hot holes). Consequently, in comparison to Nv-g-C3N4, Ti3C2Tx, Ag/Nv-g-C3N4, Bi/Nv-g-C3N4, and Ag/Bi/Nv-g-C3N4, Ag/Bi/Nv-g-C3N4/Ti3C2Tx showed significantly enhanced full-spectrum-driven photocatalytic activity, and the reaction rate constants for photocatalytic degradation of tetracycline under visible light and near-infrared light irradiation could reach 0.033 and 0.008 6 min-1, respectively, which were approximately 10-2.1 times and 8.6-1.8 times higher than those of contract samples.
  • 加载中
    1. [1]

      Li J J, Li Y, Zhu M Z, Mei Q, Tang X, Wu Y, Yue S J, Tang Y P, Wang Q Z. Constructing aloe-emodin/FeOOH organic-inorganic heterojunction for synergetic photocatalysis-Fenton eliminating antibiotic pollutants[J]. J. Environ. Chem. Eng., 2023,11109775. doi: 10.1016/j.jece.2023.109775

    2. [2]

      Nguyen T L, Pham T H, Viet N M, Thang P Q, Rajagopal R, Sathya R, Jung S H, Kim T. Improved photodegradation of antibiotics pollutants in wastewaters by advanced oxidation process based on Ni-doped TiO2[J]. Chemosphere, 2022,302134837. doi: 10.1016/j.chemosphere.2022.134837

    3. [3]

      Zhang M X, Guo W Q, Chen Y Y, He D C, Isaev A B, Zhu M S. Dissolved oxygen in aeration-driven piezo-catalytic for antibiotics pollutants removal in water[J]. Chin. Chem. Lett., 2023,34108229. doi: 10.1016/j.cclet.2023.108229

    4. [4]

      Zeghioud H, Fryda L, Djelal H, Assadi A, Kane A. A comprehensive review of biochar in removal of organic pollutants from wastewater: Characterization, toxicity, activation/functionalization and influencing treatment factors[J]. J. Water Process. Eng., 2022,47102801. doi: 10.1016/j.jwpe.2022.102801

    5. [5]

      Ma J J, Ding N, Liu H. Research progress in photocatalytic activated persulfate degradation of antibiotics by bismuth-based photocatalysts[J]. Sep. Purif. Technol., 2023,324124628. doi: 10.1016/j.seppur.2023.124628

    6. [6]

      Wang B, Zhang X X, Zhang R Q, Li Z, Tian B, Ma H X, Zheng Z, Zhou B, Ji M T, Shi C H, Hao H. Supramolecularly engineered S-scheme SubPc-Br/MoS2 photocatalyst nanosheets for enhanced photocatalytic degradation of antibiotics[J]. Chem. Eng. J., 2023,477147193. doi: 10.1016/j.cej.2023.147193

    7. [7]

      Zhang R, Xu M Q, Yu J R, Chen Z Y, Jiang J C, He J, Hao J J. Study on highly efficient p-n heterojunction Bi2MoO6/Cu2O: Synthesis, characterization and visible-light photocatalytic activity toward antibiotics degradation[J]. J. Solid State Chem., 2023,328124330. doi: 10.1016/j.jssc.2023.124330

    8. [8]

      Goudarzi M, Hamzah Abdulhusain Z, Salavati-Niasari M. Low-cost and eco-friendly synthesis of Mn-doped Tl2WO4 nanostructures for efficient visible light photocatalytic degradation of antibiotics in water[J]. Sol. Energy, 2023,262111912. doi: 10.1016/j.solener.2023.111912

    9. [9]

      Ding Y, Wang C H, Pei L, Maitra S, Mao Q N, Zheng R T, Liu M J, Ng Y H, Zhong J S, Chen L H, Su B L. Emerging heterostructured C3N4 photocatalysts for photocatalytic environmental pollutant elimination and sterilization[J]. Inorg. Chem. Front., 2023,10:3756-3780. doi: 10.1039/D3QI00657C

    10. [10]

      Bao L, Yuan B J, Yuan Y J. Boron doped mesoporous g-C3N4 nanosheets: Boosting photocatalytic nitrogen fixation performance under visible light[J]. Chem. Phys. Lett., 2023,828140715. doi: 10.1016/j.cplett.2023.140715

    11. [11]

      Wang Y Z, Xing Z P, Yang Y, Kong W F, Wu C X, Peng H, Li Z Z, Xie Y, Zhou W. Oxygen-defective Bi2MoO6/g-C3N4 hollow tubulars S-scheme heterojunctions toward optimized photocatalytic performance[J]. J. Colloid Interface Sci., 2024,653:1566-1576. doi: 10.1016/j.jcis.2023.09.152

    12. [12]

      Liang C, Wang X M, Liu W, Liu H Y, Huang D W, Zhang Y Z, Zhang K H, Jiang L S, Jia Y Y, Niu C G. Functionalized graphitic carbon nitride based catalysts in solar-to-chemical conversion for hydrogen peroxide production[J]. Chem. Eng. J., 2023,466142931. doi: 10.1016/j.cej.2023.142931

    13. [13]

      Wang J F, Fazil P, Shah M I A, Zada A, Anwar N, Zain G G, Khan W, Jan F, Lei T F, Ateeq M. Surface plasmon assisted photocatalytic hydrogen generation with Ag decorated g-C3N4 coupled SnO2 nanophotocatalyst under visible-light driven photocatalysis[J]. Int. J. Hydrog. Energy, 2023,48:21674-21685. doi: 10.1016/j.ijhydene.2023.03.048

    14. [14]

      Hassanzadeh-Tabrizi S A, Mohamad S D. Synthesis of W/Fe co-doped g-C3N4 decorated with Au nanoparticles for photocatalytic performance. Diam[J]. Relat. Mat., 2023,134109791. doi: 10.1016/j.diamond.2023.109791

    15. [15]

      Wang R, Wu J, Mao X, Wang J M, Liu Q Z, Qi Y F, He P, Qi X M, Liu G L, Guan Y. Bi spheres decorated g-C3N4/BiOI Z-scheme heterojunction with SPR effect for efficient photocatalytic removal elemental mercury[J]. Appl. Surf. Sci., 2021,556149804. doi: 10.1016/j.apsusc.2021.149804

    16. [16]

      Chen L, Li H Y, Li H M, Li H M, Qi W S, Zhang Q, Zhu J, Zhao P, Yang S D. Accelerating photogenerated charge kinetics via the g-C3N4 Schottky junction for enhanced visible-light-driven CO2 reduction[J]. Appl. Catal. B-Environ., 2022,318121863. doi: 10.1016/j.apcatb.2022.121863

    17. [17]

      Chen Y F, Ren X H, Wang X F, Tian Z, Yang X, Lu J W, Bai H Y, Jiao T F, Huang H, Hu J. Construction of Ag decorated P-doped g-C3N4 nanosheets Schottky junction via silver mirror reaction for enhanced photocatalytic activities[J]. Int. J. Hydrog. Energy, 2022,47:250-263. doi: 10.1016/j.ijhydene.2021.10.024

    18. [18]

      Qu J, Teng D G, Zhang X M, Yang Q Q, Li P, Cao Y J. Preparation and regulation of two-dimensional Ti3C2Tx MXene for enhanced adsorption-photocatalytic degradation of organic dyes in wastewater[J]. Ceram. Int, 2022,48:14451-14459. doi: 10.1016/j.ceramint.2022.01.338

    19. [19]

      Zhang B X, Wang Y, Wang Z Q, Tan G Q, Liu T, Feng S J, Tan Y Z, Liu W L, Yang Q, Liu Y, Xia A, Ren H J, Wu Y T. Surface plasmon resonance effects of Ti3C2 MXene for degradation of antibiotics under full spectrum[J]. Appl. Catal. B-Environ., 2023,339123132. doi: 10.1016/j.apcatb.2023.123132

    20. [20]

      Soni V, Singh P, Quang H H P, Khan A A P, Bajpai A, Van Le Q, Thakur V K, Thakur S, Nguyen V H, Raizada P. Emerging architecture titanium carbide (Ti3C2Tx) MXene based photocatalyst toward degradation of hazardous pollutants: Recent progress and perspectives[J]. Chemosphere, 2022,293133541. doi: 10.1016/j.chemosphere.2022.133541

    21. [21]

      Zhang D, Tan G Q, Wang M, Li B, Dang M Y, Ren H J, Xia A. The modulation of g-C3N4 energy band structure by excitons capture and dissociation[J]. Mater. Res. Bull., 2020,122110685. doi: 10.1016/j.materresbull.2019.110685

    22. [22]

      XIONG T. Preparation of nano-Ti3C2Tn and doped SnSe composites and its thermoel ectric properties. Xi'an: Shaanxi University of Science and Technology, 2021.

    23. [23]

      Jiang J C, Zheng B G, Yu W H, Wu X W, Mi R Y, Huang Z H, Liu Y G, Fang M H, Min X. Synthesis and photocatalytic performance of composite g-C3N4 with functionalized multi-walled carbon nanotubes[J]. J. Alloy. Compd., 2023,968171707. doi: 10.1016/j.jallcom.2023.171707

    24. [24]

      Fang H J, Pan Y S, Yin M Y, Pan C L. Enhanced visible light photocatalytic activity of CdS with alkalized Ti3C2 nano-sheets as co-catalyst for degradation of rhodamine B[J]. J. Mater. Sci.-Mater. Electron., 2019,30:14954-14966. doi: 10.1007/s10854-019-01868-y

    25. [25]

      CHANG B B. The construction of Ti3C2 MXene-based composites and its application of N2 photofixation. Shanghai: East China Normal University, 2022.

    26. [26]

      Liu W Z, Sun M X, Ding Z P, Gao B W, Ding W. Ti3C2 MXene embellished g-C3N4 nanosheets for improving photocatalytic redox capacity[J]. J. Alloy. Compd., 2021,877160223. doi: 10.1016/j.jallcom.2021.160223

    27. [27]

      Xiao Z Y, Do H N, Yusuf A, Jia H P, Ma H L, Jiang S S, Li J R, Sun Y, Wang C J, Ren Y, Chen G Z, He J. Facile synthesis of multi-layer Co(OH)2/CeO2-g-C3N4 ternary synergistic heterostructure for efficient photocatalytic oxidation of NO under visible light[J]. J. Hazard. Mater., 2024,462132744. doi: 10.1016/j.jhazmat.2023.132744

    28. [28]

      Akhtar T, Nasir H, Sitara E, Bukhari S A B, Schwank J W. Fabrication of novel Ag nanoparticles decorated ZrO2/g-C3N4 ternary heterojunction interface for photocatalytic reduction of nitroaromatic compounds[J]. Surf. Interfaces, 2023,39102997. doi: 10.1016/j.surfin.2023.102997

    29. [29]

      Yan B Y, Chen G Z, Ma B R, Guo Y J, Zha Y X, Li J C, Wang S X, Liu J, Zhao B X, Xie H J. Construction of surface plasmonic Bi nanoparticles and α-Bi2O3 co-modified TiO2 nanotube arrays for enhanced photocatalytic degradation of ciprofloxacin: Performance, DFT calculation and mechanism[J]. Sep. Purif. Technol., 2024,330125180. doi: 10.1016/j.seppur.2023.125180

    30. [30]

      CAO T P, LI Y J, SUN D W. Fabrication of Bi2Ti2O7/TiO2/Bi4Ti3O12 multi-heterojunction and the enhanced visible photocatalytic performance[J]. Chinese J. Inorg. Chem., 2023,39(4):699-708.  

    31. [31]

      SHI Z M, WANG Y W, MAO H H, ZHANG Q. Synthesis of clay-based porous materials loaded protonated nano g-C3N4 and application in enhance of photocatalysis[J]. Journal of Changzhou University(Natural Science Edition), 2021,33(3):24-31. doi: 10.3969/j.issn.2095-0411.2021.03.004

    32. [32]

      Wang M, Tan G Q, Ren H J, Xia A, Liu Y. Direct double Z-scheme O-g-C3N4/Zn2SnO4N/ZnO ternary heterojunction photocatalyst with enhanced visible photocatalytic activity[J]. Appl. Surf. Sci., 2019,492:690-702. doi: 10.1016/j.apsusc.2019.06.260

    33. [33]

      Wu X L, Zhang Y L, Wang K, Zhang S, Qu X F, Shi L, Du F L. In-situ construction of Bi/defective Bi4NbO8Cl for non-noble metal based Mott-Schottky photocatalysts towards organic pollutants removal[J]. J. Hazard. Mater., 2020,393122408. doi: 10.1016/j.jhazmat.2020.122408

    34. [34]

      Ghosh K, Giri P K. Experimental and theoretical study on the role of 2D Ti3C2Tx MXenes on superior charge transport and ultra-broadband photodetection in MXene/Bi2S3 nanorod composite through local Schottky junctions[J]. Carbon, 2024,216118515. doi: 10.1016/j.carbon.2023.118515

  • 加载中
    1. [1]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    2. [2]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    3. [3]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    4. [4]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    5. [5]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    6. [6]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    7. [7]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    8. [8]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    9. [9]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    10. [10]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    11. [11]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    12. [12]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    13. [13]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    14. [14]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    15. [15]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    16. [16]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    17. [17]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    18. [18]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    19. [19]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    20. [20]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

Metrics
  • PDF Downloads(0)
  • Abstract views(66)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return