Citation: Fan JIA, Wenbao XU, Fangbin LIU, Haihua ZHANG, Hongbing FU. Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473 shu

Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4

Figures(6)

  • Mn2+-doped quasi-two-dimensional perovskite (PEA)2PbyMn1-yBr4 (PEA is phenylethylamine, y is the fraction of Pb2+ in the total content of Mn2+ and Pb2+) thin films were prepared successfully with high photoluminescence quantum yield (PLQY). It constructed a dual-emissive excited state transfer system, while (PEA)2PbBr4 and impurity Mn2+ respectively act as the donor and acceptor. Mn2+ incorporation improved the luminescence properties and film morphologies. Using the femtosecond transient absorption (TA) measurement, we demonstrated the charge transfer processes between the host and the guest. To study the electroluminescence properties, (PEA)2PbyMn1-yBr4 film was employed as the active layer to fabricate LED (light emitting diodes, LEDs) devices. The (PEA)2PbyMn1-yBr4 LED device emitted a bright orange color, which demonstrated a maximum luminous intensity of 0.21 cd·m-2 with an external quantum efficiency (EQE) of 0.002 5%.
  • 加载中
    1. [1]

      Li C W, Wang X M, Bi E B, Jiang F Y, Park S M, Li Y, Chen L, Wang Z W, Zeng L W, Chen H, Liu Y J, Grice C R, Abudulimu A, Chung J H, Xian Y M, Zhu T, Lai H G, Chen B, Ellingson R J, Fu F, Ginger D S, Song Z N, Sargent E H, Yan Y F. Rational design of Lewis base molecules for stable and efficient inverted perovskite solar cells[J]. Science, 2023,379(6633):690-694. doi: 10.1126/science.ade3970

    2. [2]

      Shen X Y, Gallant B M, Holzhey P, Smith J A, Elmestekawy K A, Yuan Z C, Rathnayake P V G M, Bernardi S, Dasgupta A, Kasparavicius E, Malinauskas T, Caprioglio P, Shargaieva O, Lin Y H, McCarthy M M, Unger E, Getautis V, Widmer-Cooper A, Herz L M, Snaith H J. Chloride-based additive engineering for efficient and stable wide-bandgap perovskite solar cells[J]. Adv. Mater., 2023,35(30)2211742. doi: 10.1002/adma.202211742

    3. [3]

      Yang R, Li R Z, Cao Y, Wei Y Q, Miao Y F, Tan W L, Jiao X C, Chen H, Zhang L D, Chen Q, Zhang H T, Zou W, Wang Y M, Yang M, Yi C, Wang N N, Gao F, McNeill C R, Qin T S, Wang J P, Hang W. Oriented quasi-2D perovskites for high performance optoelectronic devices[J]. Adv Mater., 2018,30(51)1804771. doi: 10.1002/adma.201804771

    4. [4]

      Xue J J, Wang R, Chen X H, Yao C L, Jin X Y, Wang K L, Huang W C, Huang T Y, Zhao Y P, Zhai Y X, Meng D, Tan S, Liu R Z, Wang Z K, Zhu C H, Zhu K, Beard M C, Yan Y F, Yang Y. Reconfiguring the band-edge states of photovoltaic perovskites by conjugated organic cations[J]. Science, 2021,371(6529):636-640. doi: 10.1126/science.abd4860

    5. [5]

      Lin K B, Xing J, Quan L N, de Arquer F P G, Gong X W, Lu J X, Xie L Q, Zhao W J, Zhang D, Yan C Z, Li W Q, Liu X Y, Lu Y, Kirman J, Sargent E H, Xiong Q H, Wei Z H. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent[J]. Nature, 2018,562(7726):245-248. doi: 10.1038/s41586-018-0575-3

    6. [6]

      Sun Y Q, Ge L S, Dai L J, Cho C S, Orri J F, Ji K Y, Zelewski S J, Liu Y, Mirabelli A J, Zhang Y C, Huang J Y, Wang Y S, Gong K, Lai M C, Zhang L, Yang D, Lin J D, Tennyson E M, Ducati C, Stranks S D, Cui L S, Greeham N C. Bright and stable perovskite light-emitting diodes in the near-infrared range[J]. Nature, 2023,615(7954):830-835. doi: 10.1038/s41586-023-05792-4

    7. [7]

      Zhang J B, Zhang T K, Ma Z Z, Yuan F L, Zhou X, Wang H Y, Liu Z, Qing J, Chen H T, Li X J, Su S J, Xie J N, Shi Z F, Hou L T, Shan C X. A multifunctional "halide-equivalent" anion enabling efficient CsPb(Br/I)3 nanocrystals pure-red light-emitting diodes with external quantum efficiency exceeding 23%[J]. Adv. Mater., 2023,35(8)2209002. doi: 10.1002/adma.202209002

    8. [8]

      Karlsson M, Yi Z Y, Reichert S, Luo X Y, Lin W H, Zhang Z Y, Bao C X, Zhang R, Bai S, Zheng G H J, Teng P P, Duan L, Lu Y, Zheng K B, Pullerits T, Deibel C, Xu W D, Friend R, Gao F. Mixed halide perovskites for spectrally stable and high-efficiency blue light-emitting diodes[J]. Nat. Commun., 2021,12(1)361. doi: 10.1038/s41467-020-20582-6

    9. [9]

      Cui J Y, Liu Y, Deng Y Z, Lin C, Fang Z S, Xiang C S, Bai P, Du K, Zuo X B, Wen K C, Gong S L, He H P, Ye Z Z, Gao Y N, Tian H, Zhao B D, Wang J P, Jin Y Z. Efficient light-emitting diodes based on oriented perovskite nanoplatelets[J]. Sci. Adv., 2021,7(41)8458. doi: 10.1126/sciadv.abg8458

    10. [10]

      Sun Q, Zhao C Y, Yin Z X, Wang S P, Leng J, Tian W M, Jin S Y. Ultrafast and high-yield polaronic exciton dissociation in two-dimensional perovskites[J]. J. Am. Chem. Soc., 2021,143(45):19128-19136. doi: 10.1021/jacs.1c08900

    11. [11]

      Zhang H H, Wu C, Xu W B, Fu H B. Compact-type quasi-2D perovskite based on two conventional 3D perovskites[J]. Nano Lett., 2022,23(1):252-258.

    12. [12]

      LU X R, ZHAO Y, LIU J, LI C H, YOU X C. Modulation of the structure and property ABX3 type perovskite photovoltaic material[J]. Chinese J. Inorg. Chem., 2015,31(9):1678-1686.  

    13. [13]

      ZHANG Y, ZHOU H P. Intrinsic stability of organic-inorganic hybrid perovskite[J]. Acta Phys. Sin., 2019,68(15):137-147.  

    14. [14]

      Smith I C, Hoke E T, Solis-Ibarra D, McGehee M D, Karunadasa H I. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability[J]. Angew. Chem. Int. Ed., 2014,53(42):11232-11235. doi: 10.1002/anie.201406466

    15. [15]

      Zhao C Y, Tian W M, Sun Q, Yin Z X, Leng J, Wang S P, Liu J X, Wu K F, Jin S Y. Trap-enabled long-distance carrier transport in perovskite quantum wells[J]. J. Am. Chem. Soc., 2020,142(35):15091-15097. doi: 10.1021/jacs.0c06572

    16. [16]

      Zhang L, Sun C J, He T W, Jiang Y Z, Wei J L, Huang Y M, Yuan M J. High-performance quasi-2D perovskite light-emitting diodes: From materials to devices[J]. Light-Sci. Appl., 2021,10(1)61. doi: 10.1038/s41377-021-00501-0

    17. [17]

      Sun C J, Jiang Y Z, Cui M H, Qiao L, Wei J L, Huang Y M, Zhang L, He T W, Li S S, Hsu H Y, Qin C C, Long R, Yuan M J. High-performance large-area quasi-2D perovskite light-emitting diodes[J]. Nat. Commun., 2021,12(1)2207. doi: 10.1038/s41467-021-22529-x

    18. [18]

      Qin C J, Matsushima T, Potscavage W J, Sandanayaka A S D, Leyden M R, Bencheikh F, Goushi K, Mathevet F, Heinrich B, Yumoto G, Kanemitsu Y, Adachi C. Triplet management for efficient perovskite light-emitting diodes[J]. Nat. Photonics, 2020,14(2):70-75. doi: 10.1038/s41566-019-0545-9

    19. [19]

      Zhang H H, Yao J N, Zhou K G, Yang Y A, Fu H B. Thermally activated charge transfer in dual-emission Mn2+-alloyed perovskite quantum wells for luminescent thermometers[J]. Chem. Mater., 2022,34(4):1854-1861. doi: 10.1021/acs.chemmater.1c04118

    20. [20]

      Mao L L, Stoumpos C C, Kanatzidis M G. Two-dimensional hybrid halide perovskites: Principles and promises[J]. J. Am. Chem. Soc., 2018,141(3):1171-1190.

    21. [21]

      Guo Y X, Yin X T, Liu D, Liu J, Zhang C, Xie H X, Yang Y W, Que W X. Photoinduced self-healing of halide segregation in mixed- halide perovskites[J]. ACS Energy Lett., 2021,6(7):2502-2511. doi: 10.1021/acsenergylett.1c01040

    22. [22]

      Zhong Y, Yang J, Wang X Y, Liu Y K, Cai Q Q, Tan L C, Chen Y W. Inhibition of ion migration for highly efficient and stable perovskite solar cells[J]. Adv Mater., 2023,35(52)2302552. doi: 10.1002/adma.202302552

    23. [23]

      Yun R, Yang H X, Sun W D, Zhang L B, Liu X W, Zhang X D, Li X Y. Recent advances on Mn2+-doping in diverse metal halide perovskites[J]. Laser Photonics Rev., 2023,17(2)2200524. doi: 10.1002/lpor.202200524

    24. [24]

      Wang S, Cai P Q, Xu T M, Pu X P, Du P, Wang X F, Tang Y, Yuan X L, Chen H C, Ai Q, Si J J, Yao X, Rabchinskii M K, Brunkov P N, Liu Z G. Self-trapped-induced energy funneling and broadband emission in the Mn2+ doped two-dimensional perovskite[J]. J. Lumin., 2020,226117457. doi: 10.1016/j.jlumin.2020.117457

    25. [25]

      He Y H, Stoumpos C C, Hadar I, Luo Z Z, McCall K M, Liu Z F, Chung D Y, Wessels B W, Kanatzidis M G. Demonstration of energy-resolved γ‑ray detection at room temperature by the CsPbCl3 perovskite semiconductor[J]. J. Am. Chem. Soc., 2021,143(4):2068-2077. doi: 10.1021/jacs.0c12254

    26. [26]

      Li R J, Chen B B, Ren N Y, Wang P Y, Shi B, Xu Q J, Zhao H, Han W, Zhu Z, Liu J J, Huang Q, Zhang D K, Zhao Y, Zhang X D. CsPbCl3-cluster-widened bandgap and inhibited phase segregation in a wide-bandgap perovskite and its application to NiOx-based perovskite/silicon tandem solar cells[J]. Adv. Mater., 2022,34(27)2201451. doi: 10.1002/adma.202201451

    27. [27]

      Ji S H, Yuan X, Cao S, Ji W Y, Zhang H Z, Wang Y J, Li H B, Zhao J L, Zou B S. Near-unity red Mn2+ photoluminescence quantum yield of doped CsPbCl3 nanocrystals with Cd incorporation[J]. J. Phys. Chem. Lett., 2020,11(6):2142-2149. doi: 10.1021/acs.jpclett.0c00372

    28. [28]

      Cortecchia D, Mróz W, Neutzner S, Borzda T, Folpini G, Brescia R, Petrozza A. Defect engineering in 2D perovskite by Mn(Ⅱ) doping for light-emitting applications[J]. Chem, 2019,5(8):2146-2158. doi: 10.1016/j.chempr.2019.05.018

    29. [29]

      Zhang H H, Yao J N, Yang Y A, Fu H B. Tailoring color-tunable dual emissions of Mn2+-alloyed two-dimensional perovskite quantum wells[J]. Chem. Mater., 2021,33(8):2847-2854. doi: 10.1021/acs.chemmater.0c04934

    30. [30]

      Li C H A, Geng P, Shivarudraiah S B, Ng M, Zhang X F, Xu B M, Guo L, Halpert J E. The multiple roles of metal ion dopants in spectrally stable, efficient quasi-2D perovskite sky-blue light-emitting devices[J]. Adv. Opt. Mater., 2021,9(21)2100860. doi: 10.1002/adom.202100860

  • 加载中
    1. [1]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    2. [2]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    3. [3]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    4. [4]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    5. [5]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    6. [6]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    7. [7]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    8. [8]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    9. [9]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    10. [10]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    11. [11]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    12. [12]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    13. [13]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    14. [14]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    15. [15]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    16. [16]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    17. [17]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    18. [18]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    19. [19]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    20. [20]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

Metrics
  • PDF Downloads(0)
  • Abstract views(58)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return