Citation: Donghui PAN, Yuping XU, Xinyu WANG, Lizhen WANG, Junjie YAN, Dongjian SHI, Min YANG, Mingqing CHEN. Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468 shu

Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging

Figures(9)

  • Melanin nanoparticle (MNP) was modified by polyethylene glycols (PEG), and the resulting compound (PEG-MNP) was obtained. The 68Ga labeled PEG-MNP was prepared by chelating radioactive 68Ga3+ ions with high labeling yield (95.6%±1.9%) and radiochemical purity (>95%). The stability of the labeling compound as well. Then 68Ga-PEG-MNP for simulating PM2.5 particles (particulate matter 2.5, size < 2.5 μm) was obtained through nebulization. After inhaling the nebulized particles, whole-body positron emission tomography (PET) in mice was performed. It revealed that nebulized 68Ga - PEG - MNP diffused from the trachea to the bilateral lobe area of the lungs and retained in the lungs. Quantification of PET images showed that the uptakes of the trachea and lung were (7.20±2.44)%·g-1, (4.46±1.04)%·g-1, (4.91±2.48)%·g-1, (4.71±2.39)%·g-1, (3.34±1.14)%·g-1, and (17.90±3.75)%·g-1, (18.10±4.52)%·g-1, (19.49±6.11)%·g-1, (19.19±2.83)%·g-1, (20.87±2.40)%·g-1 at 0 min, 30 min, 1 h, 2 h, 4 h after administration of the nebulized 68Ga-PEG-MNP, respectively. The results were highly consistent with the findings of ex-vivo radiographic autoradiography.
  • 加载中
    1. [1]

      Louis S, Carlson A K, Suresh A, Rim J, Mays M, Ontaneda D, Dhawan A. Impacts of climate change and air pollution on neurologic health, disease, and practice: A scoping review[J]. Neurology, 2023,100(10):474-483. doi: 10.1212/WNL.0000000000201630

    2. [2]

      Thiankhaw K, Chattipakorn N, Chattipakorn S C. PM2.5 exposure in association with AD-related neuropathology and cognitive outcomes[J]. Environ. Pollut., 2022,292118320. doi: 10.1016/j.envpol.2021.118320

    3. [3]

      Chen C, Chen H, van Donkelaar A, Burnett R T, Martin R V, Chen L, Tjepkema M, Kirby-McGregor M, Kaufman J. Using parametric g-computation to estimate the effect of long-term exposure to air pollution on mortality risk and simulate the benefits of hypothetical policies: The Canadian community health survey cohort (2005 to 2015)[J]. Environ. Health Perspect., 2023,131(3)037010. doi: 10.1289/EHP11095

    4. [4]

      Liu Z T, Fang C L, Sun B, Liao X. Governance matters: Urban expansion, environmental regulation, and PM2.5 pollution[J]. Sci. Total Environ., 2023,876162788. doi: 10.1016/j.scitotenv.2023.162788

    5. [5]

      Barzgar F, Sadeghi-Mohammadi S, Aftabi Y, Zarredar H, Shakerkhatibi M, Sarbakhsh P, Gholampour A. Oxidative stress indices induced by industrial and urban PM2.5-bound metals in A549 cells[J]. Sci. Total Environ., 2023,877162726. doi: 10.1016/j.scitotenv.2023.162726

    6. [6]

      Guo C C, Lyu Y, Xia S S, Ren X K, Li Z F, Tian F J, Zheng J P. Organic extracts in PM2.5 are the major triggers to induce ferroptosis in SH-SY5Y cells[J]. Ecotoxicol. Environ. Saf., 2023,249114350. doi: 10.1016/j.ecoenv.2022.114350

    7. [7]

      Song J, Han K Y, Wang Y, Qu R R, Liu Y, Wang S L, Wang L B, An Z, Li J, Wu H, Wu W D. Microglial activation and oxidative stress in PM2.5-induced neurodegenerative disorders[J]. Antioxidants, 2022,11(8)1482. doi: 10.3390/antiox11081482

    8. [8]

      Wang Y X, Zhong Y J, Hou T F, Liao J P, Zhang C, Sun C, Wang G F. PM2.5 induces EMT and promotes CSC properties by activating Notch pathway in vivo and vitro[J]. Ecotoxicol. Environ. Saf., 2019,178:159-167. doi: 10.1016/j.ecoenv.2019.03.086

    9. [9]

      Zhang Y T, Zhang L K, Chen W W, Zhang Y Y, Wang X M, Dong Y Y, Zhang W X, Lin X X. Shp2 regulates PM2.5-induced airway epithelial barrier dysfunction by modulating ERK1/2 signaling pathway[J]. Toxicol. Lett., 2021,350:62-70. doi: 10.1016/j.toxlet.2021.07.002

    10. [10]

      Zhao C, Pu W, Niu M Y, Wazir J, Song S Y, Wei L L, Li L, Su Z L, Wang H W. Respiratory exposure to PM2.5 soluble extract induced chronic lung injury by disturbing the phagocytosis function of macrophage[J]. Environ. Sci. Pollut. Res., 2022,29(10):13983-13997. doi: 10.1007/s11356-021-16797-9

    11. [11]

      Seifert R, Emmett L, Rowe S P, Herrmann K, Hadaschik B, Calais J, Giesel F L, Reiter R. Maurer T, Heck M, Gafita A, Morris M J, Fanti S, Weber W A, Hope T A, Hofman M S, Fendler W P, Eiber M. Second version of the prostate cancer molecular imaging standardized evaluation framework including response evaluation for clinical trials (PROMISE V2)[J]. Eur. Urol., 2023,83(5):405-412. doi: 10.1016/j.eururo.2023.02.002

    12. [12]

      Jain P, Chaney A M, Carlson M L, Jackson I M, Rao A, James M L. Neuroinflammation PET imaging: Current opinion and future directions[J]. J. Nucl. Med., 2020,61(8):1107-1112. doi: 10.2967/jnumed.119.229443

    13. [13]

      Taralli S, Lorusso M, Perrone E, Perotti G, Zagaria L, Calcagni M L. PET/CT with fibroblast activation protein inhibitors in breast cancer: Diagnostic and theranostic application-A literature review[J]. Cancers, 2023,15(3)908. doi: 10.3390/cancers15030908

    14. [14]

      Pan D H, Sheng J, Wang X Y, Huang Q H, Yan J J, Wang L Z, Yang R L, Shi D J, Xu Y P, Chen M Q. In vivo SPECT imaging of an 131I labeled PM 2.5 mimic substitute[J]. Nucl. Sci. Technol., 2020,31:1-8. doi: 10.1007/s41365-019-0712-1

    15. [15]

      Yang M, Fan Q L, Zhang R P, Cheng K, Yan J J, Pan D H, Ma X W, Lu A, Cheng Z. Dragon fruit-like biocage as an iron trapping nanoplatform for high efficiency targeted cancer multimodality imaging[J]. Biomaterials, 2015,69:30-37. doi: 10.1016/j.biomaterials.2015.08.001

    16. [16]

      Tian L Y, Li X, Ji H X, Yu Q, Yang M J, Guo L P, Huang L P, Gao W Y. Melanin-like nanoparticles: Advances in surface modification and tumour photothermal therapy[J]. J. Nanobiotechnology, 2022,20(1)485. doi: 10.1186/s12951-022-01698-x

    17. [17]

      Jung W S, Lee D Y, Moon E, Jon S. Nanoparticles derived from naturally occurring metal chelators for theranostic applications[J]. Adv. Drug Deliv. Rev., 2022,191114620. doi: 10.1016/j.addr.2022.114620

    18. [18]

      Marcovici I, Coricovac D, Pinzaru I, Macasoi I G, Popescu R, Chioibas R, Zupko I, Dehelean C A. Melanin and melanin-functionalized nanoparticles as promising tools in cancer research-A review[J]. Cancers, 2022,14(7)1838. doi: 10.3390/cancers14071838

    19. [19]

      Fan Q L, Cheng K, Hu X, Ma X W, Zhang R P, Yang M, Lu X M, Xing L, Huang W, Gambhir S S, Cheng Z. Transferring biomarker into molecular probe: Melanin nanoparticle as a naturally active platform for multimodality imaging[J]. J. Am. Chem. Soc., 2014,136:15185-15194. doi: 10.1021/ja505412p

    20. [20]

      Zhou N N, Liu C, Guo X Y, Xu Y P, Gong J F, Qi C S, Zhang X T, Yang M, Zhu H, Shen L, Yang Z. Impact of 68Ga-NOTA-MAL-MZHER2 PET imaging in advanced gastric cancer patients and therapeutic response monitoring[J]. Eur. J. Nucl. Med. Mol. Imaging, 2021,48(1):161-175. doi: 10.1007/s00259-020-04898-5

    21. [21]

      Kendrick J, Francis R J, Hassan G M, Rowshanfarzad P, Ong J S L, Ebert M A. Fully automatic prognostic biomarker extraction from metastatic prostate lesion segmentations in whole-body[68Ga]Ga-PSMA-11 PET/CT images[J]. Eur. J. Nucl. Med. Mol. Imaging, 2022,50(1):67-79. doi: 10.1007/s00259-022-05927-1

    22. [22]

      Fortunati E, Argalia G, Zanoni L, Fanti S, Ambrosini V. New PET radiotracers for the imaging of neuroendocrine neoplasms[J]. Curr. Treat. Options Oncol., 2022,23(5):703-720. doi: 10.1007/s11864-022-00967-z

    23. [23]

      Yan Q S, Zhong J W, Liu Y, Peng S M, Feng P J, Zhong Y H, Hu H Z. Synthesis and preclinical evaluation of a heterodimeric radioligand targeting fibroblast activation protein and integrin-αvβ3[J]. Eur. J. Med. Chem., 2023,251115279. doi: 10.1016/j.ejmech.2023.115279

  • 加载中
    1. [1]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    2. [2]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    3. [3]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    4. [4]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    5. [5]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    6. [6]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    7. [7]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    8. [8]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    9. [9]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    10. [10]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    11. [11]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    12. [12]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    13. [13]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    14. [14]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    15. [15]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    16. [16]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    17. [17]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    18. [18]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    19. [19]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    20. [20]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

Metrics
  • PDF Downloads(0)
  • Abstract views(55)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return