Citation: Zhiwen HU, Weixia DONG, Qifu BAO, Ping LI. Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462 shu

Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis

  • Corresponding author: Weixia DONG, weixia_dong@sina.com
  • Received Date: 8 December 2023
    Revised Date: 13 March 2024

Figures(9)

  • BaTiO3 was synthesized at low-temperatures based on the starch gelatinization mechanism. The morphology and phase structure of as-synthesized samples were characterized by scanning electron microscopy (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), Fourier transform infrared spectra (FTIR), UV visible (UV-Vis) absorption spectra, and X-ray photoelectron spectroscopy (XPS). The piezocatalytic performance of BaTiO3 was tested targeting a series of typical dyes for degradation. The results showed that tetragonal BaTiO3 powder was obtained at a calcination temperature of 600 ℃, and the crystallinity gradually increased with the increase in temperature. Cubic-like BaTiO3 with uniform size distribution was synthesized at a calcination temperature of 700 ℃; The degradation of rhodamine B (RhB), Congo red (CR), and methyl orange (MO) dyes by BaTiO3 all showed good performance, with reaction rate constants of 1.090×10-2, 1.113×10-2, and 1.084×10-2 min-1, respectively. Furthermore, the mechanism of piezocatalysis reveals that the hole (h+) and superoxide radicals (·O2-) are the main reactive species in the degradation process by targeting the degradation of CR.
  • 加载中
    1. [1]

      Liu D M, Jin C C, Shan F K. Synthesizing BaTiO3 nanostructures to explore morphological influence, kinetics, and mechanism of piezocatalytic dye degradation[J]. ACS Appl. Mater. Interfaces, 2020,12(15):17443-17451. doi: 10.1021/acsami.9b23351

    2. [2]

      Ray S K, Cho J W, Jin H. A critical review on strategies for improving efficiency of BaTiO3-based photocatalysts for wastewater treatment[J]. J. Environ. Manage., 2021,290(1)112679.

    3. [3]

      Wu J, Qin N, Bao D H. Effective enhancement of piezocatalytic activity of BaTiO3 nanowires under ultrasonic vibration[J]. Nano Energy, 2018,45:44-51. doi: 10.1016/j.nanoen.2017.12.034

    4. [4]

      Jin C C, Liu D M, Hu J. The role of microstructure in piezocatalytic degradation of organic dye pollutants in wastewater[J]. Nano Energy, 2019,59:372-379. doi: 10.1016/j.nanoen.2019.02.047

    5. [5]

      Yuan B W, Jiang W, Qin N. Enhanced piezocatalytic performance of (Ba, Sr)TiO3 nanowires to degrade organic pollutants[J]. ACS Appl. Nano Mater., 2018,1(9):5119-5127. doi: 10.1021/acsanm.8b01206

    6. [6]

      Xu S Y, Guo L M, Sun Q J. Piezotronic effect enhanced plasmonic photocatalysis by AuNPs/BaTiO3 heterostructures[J]. Adv. Funct. Mater., 2019,29(13)1808737. doi: 10.1002/adfm.201808737

    7. [7]

      DING H Y, SHANG S M, QIN G M. Submicron tetragonal barium titanate: Preparation by solid state reaction at low temperature and crystal phase control[J]. Chinese J. Inorg. Chem., 2018,34(8):1483-1488.  

    8. [8]

      Cheng Y, Liang K X, Chen Y F. Effect of molecular structure changes during starch gelatinization on its rheological and 3D printing properties[J]. Food Hydrocolloids, 2023,137108364. doi: 10.1016/j.foodhyd.2022.108364

    9. [9]

      Gao R J, Guo W J, Zhang Y D. Enhancement of gelatinization on electrochemical performance of corn starch-based porous carbon as electrode material in supercapacitors[J]. Diam. Relat. Mat., 2024,141110598. doi: 10.1016/j.diamond.2023.110598

    10. [10]

      Zhang C H, Wang Y X, Zheng J X. Improved supercapacitor performance of α-starch-derived porous carbon through gelatinization[J]. J. Power Sources, 2022,521230942. doi: 10.1016/j.jpowsour.2021.230942

    11. [11]

      HU Z W, DONG W X, BAO Q F. Preparation and piezocatalytic properties of Rubik's cube-like nano-microstructure BaTiO3[J]. Chinese J. Inorg. Chem., 2023,39(3):475-484.  

    12. [12]

       

    13. [13]

      Fei R, Zhu G G, Zhang W B. In-situ generation of oxygen vacancies and metallic bismuth from (BiO)2CO3 via N2-assisted thermal-treatment for efficient selective photocatalytic NO removal[J]. Appl. Catal. B-Environ., 2020,281119481.

    14. [14]

      Yashika G, Albanesi E A, Walz M V. Grain size and lattice parameter's influence on band gap of SnS thin nano-crystalline films[J]. Thin Solid Films, 2016,612:310-316. doi: 10.1016/j.tsf.2016.05.056

    15. [15]

      Wang S J, Qu P, Li C. Hydrothermal synthesis of dendritic BaTiO3 ceramic powders and its application in BaTiO3/P(VDF-TrFE) composites[J]. Int. J. Appl. Ceram. Technol., 2017,14(5):969-975. doi: 10.1111/ijac.12716

    16. [16]

      Wang W, Zhou H X, Yang H. Effects of salts on the gelatinization and retrogradation properties of maize starch and waxy maize starch[J]. Food Chem., 2017,214:319-327. doi: 10.1016/j.foodchem.2016.07.040

    17. [17]

      Zhao T T, Zhang H C, Chen F F. Study on structural changes of starches with different amylose content during gelatinization process[J]. Starch-Stärke, 2022,74(7/8)2100269.

    18. [18]

      Wu J R, Wang W W, Tian Y. Piezotronic effect boosted photocatalytic performance of heterostructured BaTiO3/TiO2 nanofibers for degradation of organic pollutants[J]. Nano Energy, 2020,77105122. doi: 10.1016/j.nanoen.2020.105122

    19. [19]

      Xu X L, Wu Z, Xiao L B. Strong piezo-electro-chemical effect of piezoelectric BaTiO3 nanofibers for vibration-catalysis[J]. J. Alloy. Compd., 2018,762:915-921. doi: 10.1016/j.jallcom.2018.05.279

    20. [20]

      Wu J, Xu Q, Lin E Z. Insights into the role of ferroelectric polarization in piezocatalysis of nanocrystalline BaTiO3[J]. ACS Appl. Mater. Interfaces, 2018,10(21):17842-17849. doi: 10.1021/acsami.8b01991

    21. [21]

      Li Q, Lewis J A. Nanoparticle inks for directed assembly of three-dimensional periodic structures[J]. Adv. Mater., 2003,15(19):1639-1643. doi: 10.1002/adma.200305413

    22. [22]

      Wang S S, Wu Z, Chen J. Lead-free piezoelectric sodium niobate nanowires with strong piezo-catalysis for dye wastewater degradation[J]. Ceram. Int., 2019,45(9):11703-11708. doi: 10.1016/j.ceramint.2019.03.045

    23. [23]

      You H L, Ma X X, Wu Z. Piezoelectrically/pyroelectrically-driven vibration/cold-hot energy harvesting for mechano-/pyro-bi-catalytic dye decomposition of NaNbO3 nanofibers[J]. Nano Energy, 2018,52:351-359. doi: 10.1016/j.nanoen.2018.08.004

    24. [24]

      Ling J S, Wang K, Wang Z Y. Enhanced piezoelectric-induced catalysis of SrTiO3 nanocrystal with well-defined facets under ultrasonic vibration[J]. Ultrason. Sonochem., 2019,61104819.

    25. [25]

      Lin E Z, Wu J, Qin N. Silver modified barium titanate as a highly efficient piezocatalyst[J]. Catal. Sci. Technol., 2018,8(18):4788-4796. doi: 10.1039/C8CY01127C

    26. [26]

      Liu Q F, Ma J J, Sharma M. Photocatalytic, piezocatalytic, and piezo-photocatalytic effects in ferroelectric (Ba0.875Ca0.125)(Ti0.95Sn0.05)O3 ceramics[J]. J. Am. Ceram. Soc., 2019,102(10):5807-5817. doi: 10.1111/jace.16502

    27. [27]

      Yu C Y, Tan M X, Li Y. Ultrahigh piezocatalytic capability in eco-friendly BaTiO3 nanosheets promoted by 2D morphology engineering[J]. J. Colloid Interface Sci., 2021,596(29):288-296.

    28. [28]

      Zhou X F, Wu S H, Li C B. Piezophototronic effect in enhancing charge carrier separation and transfer in ZnO/BaTiO3 heterostructures for high-efficiency catalytic oxidation[J]. Nano Energy, 2019,66104127. doi: 10.1016/j.nanoen.2019.104127

  • 加载中
    1. [1]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    2. [2]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    3. [3]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    4. [4]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    5. [5]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    6. [6]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    7. [7]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    8. [8]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    9. [9]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    10. [10]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    11. [11]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    12. [12]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    13. [13]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    14. [14]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    15. [15]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    16. [16]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    17. [17]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    18. [18]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    19. [19]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    20. [20]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

Metrics
  • PDF Downloads(0)
  • Abstract views(56)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return