Citation: Jing JIN, Zhuming GUO, Zhiyin XIAO, Xiujuan JIANG, Yi HE, Xiaoming LIU. Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458 shu

Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations

Figures(12)

  • Five inorganic monoiron(Ⅱ) carbonyl salts 1-5, fac-M[Fe(CO)3I3]n (Mn+=Na+ (1), K+ (2), Mg2+ (3), Ca2+ (4), NH4+ (5)) were prepared from the reactions of cis-[Fe(CO)4I2] precursor with the iodo salts (MIn), and developed as CO-releasing molecules (CORMs) for CO therapy of cancer. The decomposition of salts 1-5 with CO-release in DMSO, D2O, saline, and phosphonate buffer solution was investigated by the Fourier transform infrared (FTIR) spectroscopic monitoring. The corresponding kinetics for the decomposing of these salts were estimated by abiding by a first-order model. Cytotoxicity of the five salts was assessed on a bladder cancer cell line (RT112) by the methyl thiazolyl tetrazolium (MTT) assays for 24 h, with the half maximal inhibitory concentration (IC50) values of 25-43 μmol·L-1. Notably, varying a counter ion of fac-[Fe(CO)3I3]- anion from an organic aminium to an inorganic cation unambiguously affects its stability and thus the cytotoxicity. Moreover, a mechanistic probing into the cytotoxicity of fac-[Fe(CO)3I3]- anion was paved. Interestingly, not only the produced iodine radicals but also the gaseous CO from the decomposition contributed to its cytotoxicity. Particularly, it was found that, with the treatment of the anion, the reactive oxygen species (ROS) level in the mitochondria significantly enhanced, and the mitochondria-related protein expression of Parkin was extremely upregulated. The ferroptosis inhibitor assays of Ferrostatin‑1 and Liproxstatin-1 confirmed that these complexes evoked a ferroptosis-involved pathway to contribute to their cytotoxicity. Therefore, a mechanistic understanding of the cytotoxicity of fac-[Fe(CO)3I3]- anion is proposed, which is stimulated by the decomposing of the anion, and thus manufactures the mitochondria-relevant activities such as fission, energy metabolism, and mitophagy, and evokes a pathway of ferroptosis, to lead severe cellular damage even death.
  • 加载中
    1. [1]

      Kim H P, Ryter S W, Choi A M K. CO as a cellular signaling molecule[J]. Annu. Rev. Pharmacol. Toxicol., 2006,46:411-449. doi: 10.1146/annurev.pharmtox.46.120604.141053

    2. [2]

      Tsuchihashi S, Busuttil R W, Kupiec-Weglinski J W. Heme oxygenase system//Jean-Franç ois D, Pierre-Alain C, Christian T, Rolf G. Signaling pathways in liver diseases. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005: 291-298

    3. [3]

      Ling K, Men F, Wang W C, Zhou Y Q, Zhang H W, Ye D W. Carbon monoxide and its controlled release: Therapeutic application, detection and development of carbon monoxide-releasing molecules (CO-RMs)[J]. J. Med. Chem., 2017,61(7):2611-2635.

    4. [4]

      Motterlini R, Otterbein L E. The therapeutic potential of carbon monoxide[J]. Nat. Rev. Drug Discov., 2010,9(9):728-743. doi: 10.1038/nrd3228

    5. [5]

      Romao C C, Blä ttler W A, Seixas J D, Bernardes G J L. Developing drug molecules for therapy with carbon monoxide[J]. Chem. Soc. Rev., 2012,41(9):3571-3583. doi: 10.1039/c2cs15317c

    6. [6]

      Yang X X, Lu W, Hopper C P, Ke B W, Wang B H. Nature's marvels endowed in gaseous molecules I: Carbon monoxide and its physiological and therapeutic roles[J]. Acta Pharm. Sin. B, 2021,11(6):1434-1445. doi: 10.1016/j.apsb.2020.10.010

    7. [7]

      Pena A C, Pamplona A. Heme oxygenase-1, carbon monoxide, and malaria - the interplay of chemistry and biology[J]. Coord. Chem. Rev., 2022,453214285. doi: 10.1016/j.ccr.2021.214285

    8. [8]

      Choi H I, Zeb A, Kim M S, Rana I, Khan N, Qureshi O S, Lim C W, Park J S, Gao Z G, Maeng H J, Kim J K. Controlled therapeutic delivery of CO from carbon monoxide-releasing molecules (CORMs)[J]. J. Control. Release, 2022,350:652-667. doi: 10.1016/j.jconrel.2022.08.055

    9. [9]

      Zhou Y Z, Yang T, Liang K, Chandrawati R. Metal-organic frameworks for therapeutic gas delivery[J]. Adv. Drug Deliv. Rev., 2021,171:199-214. doi: 10.1016/j.addr.2021.02.005

    10. [10]

      Wegiel B, Hanto D W, Otterbein L E. The social network of carbon monoxide in medicine[J]. Trends Mol. Med, 2013,19(1):3-11. doi: 10.1016/j.molmed.2012.10.001

    11. [11]

      Otterbein L E, Foresti R, Motterlini R. Heme oxygenase-1 and carbon monoxide in the heart: The balancing act between danger signaling and pro-survival[J]. Circ. Res., 2016,118(12):1940-1959. doi: 10.1161/CIRCRESAHA.116.306588

    12. [12]

      Motterlini R, Clark J E, Foresti R, Sarathchandra P, Mann B E, Green C J. Carbon monoxide-releasing molecules - characterization of biochemical and vascular activities[J]. Circ. Res., 2002,90(2):E17-E24.

    13. [13]

      Jiang X J, Xiao Z Y, Zhong W, Liu X M. Brief survey of diiron and monoiron carbonyl complexes and their potentials as CO-releasing molecules (CORMs)[J]. Coord. Chem. Rev., 2021,429213634. doi: 10.1016/j.ccr.2020.213634

    14. [14]

      Fairlamb I J S, Lynam J M. Chapter 7 - carbon monoxide-releasing molecules: design principles inspired by mechanism, enabling activity to be controlled and tuned//Hirao T, Moriuchi T[J]. Advances in Bioorganometallic Chemistry. Amsterdam: Elsevier, 2019:137-154.

    15. [15]

      Ford P C. Metal complex strategies for photo-uncaging the small molecule bioregulators nitric oxide and carbon monoxide[J]. Coord. Chem. Rev., 2018,376:548-564. doi: 10.1016/j.ccr.2018.07.018

    16. [16]

      Mann B E. 3.29 - Signaling molecule delivery (CO)//Reedijk J, Poeppelmeier K. Comprehensive Inorganic Chemistry Ⅱ (Second Edition). Amsterdam: Elsevier, 2013: 857-876

    17. [17]

      Rimmer R D, Pierri A E, Ford P C. Photochemically activated carbon monoxide release for biological targets. Toward developing air-stable photoCORMs labilized by visible light[J]. Coord. Chem. Rev., 2012,256(15/16):1509-1519.

    18. [18]

      Abeyrathna N, Washington K, Bashur C, Liao Y. Nonmetallic carbon monoxide releasing molecules (CORMs)[J]. Org. Biomol. Chem., 2017,15(41):8692-8699. doi: 10.1039/C7OB01674C

    19. [19]

      Ji X Y, Wang B H. Strategies toward organic carbon monoxide prodrugs[J]. Acc. Chem. Res., 2018,51(6):1377-1385. doi: 10.1021/acs.accounts.8b00019

    20. [20]

      Nakae T, Hirotsu M, Nakajima H. CO Release from N, C, S-Pincer iron(Ⅲ) carbonyl complexes induced by visible-to-NIR light irradiation: Mechanistic insight into effects of axial phosphorus ligands[J]. Inorg. Chem., 2018,57(14):8615-8626. doi: 10.1021/acs.inorgchem.8b01407

    21. [21]

      Ou J, Zheng W H, Xiao Z Y, Yan Y P, Jiang X J, Dou Y, Jiang R, Liu X M. Core-shell materials bearing iron(Ⅱ) carbonyl units and their CO-release via an upconversion process[J]. J. Mater. Chem. B, 2017,5(41):8161-8168. doi: 10.1039/C7TB01434A

    22. [22]

      Sitnikov N S, Li Y C, Zhang D F, Yard B, Schmalz H G. Design, synthesis, and functional evaluation of CO-releasing molecules triggered by penicillin G amidase as a model protease[J]. Angew. Chem. Int. Ed., 2015,54(42):12314-12318. doi: 10.1002/anie.201502445

    23. [23]

      Jiang X J, Chen L M, Wang X, Long L, Xiao Z Y, Liu X M. Photoinduced carbon monoxide release from half-sandwich iron(Ⅱ) carbonyl complexes by visible irradiation: Kinetic analysis and mechanistic investigation[J]. Chem.-Eur. J., 2015,21(37):13065-13072. doi: 10.1002/chem.201501348

    24. [24]

      Long L, Jiang X J, Wang X, Xiao Z Y, Liu X M. Water-soluble diiron hexacarbonyl complex as a CO-RM: Controllable CO-releasing, releasing mechanism and biocompatibility[J]. Dalton Trans., 2013,42(44):15663-15669. doi: 10.1039/c3dt51281a

    25. [25]

      Romanski S, Ruecker H, Stamellou E, Guttentag M, Neudoerfl J M, Alberto R, Amslinger S, Yard B, Schmalz H G. Iron dienylphosphate tricarbonyl complexes as water-soluble enzyme-triggered CO-releasing molecules (ET-CORMs)[J]. Organometallics, 2012,31(16):5800-5809. doi: 10.1021/om300359a

    26. [26]

      Atkin A J, Fairlamb I J S, Ward J S, Lynam J M. CO Release from norbornadiene iron(0) tricarbonyl complexes: Importance of ligand dissociation[J]. Organometallics, 2012,31(16):5894-5902. doi: 10.1021/om300419w

    27. [27]

      Jackson C S, Schmitt S, Dou Q P, Kodanko J J. Synthesis, characterization, and reactivity of the stable iron carbonyl complex[Fe(CO)(N4Py)](ClO4)2: Photoactivated carbon monoxide release, growth inhibitory activity, and peptide ligation[J]. Inorg. Chem., 2011,50(12):5336-5338. doi: 10.1021/ic200676s

    28. [28]

      Fairlamb I J S, Lynam J M, Moulton B E, Taylor I E, Duhme-Klair A K, Sawle P, Motterlini R. η1-2-pyrone metal carbonyl complexes as CO-releasing molecules (CO-RMs): A delicate balance between stability and CO liberation[J]. Dalton Trans., 2007,33:3603-3605.

    29. [29]

      Schlawe D, Majdalani A, Velcicky J, Heßler E, Wieder T, Prokop A, Schmalz H G. Iron-containing nucleoside analogues with pronounced apoptosis-inducing activity[J]. Angew. Chem. Int. Ed., 2004,43(13):1731-1734. doi: 10.1002/anie.200353132

    30. [30]

      JIANG X J, XIAO Z Y, LONG L, CHEN L M, ZHANG L Q, LIU X M. Interactions of a water-soluble diiron hexacarbonyl complex with biologically relevant molecules and their promotion in CO-Release[J]. Chinese J. Inorg. Chem., 2022,38(5):913-920.  

    31. [31]

      LUO J B, GUO J Z, XIAO Z Y, ZHONG W, LI X M, LIU X M. Preparation of dicarbonyl iron compounds with a bidentate phosphine and their CO release behaviors upon irradiation[J]. Chinese J. Inorg. Chem., 2022,38(7):1241-1251.  

    32. [32]

      ZhANG J D, JIANG X J, XIAO Z Y, CHEN L M, WANG X M, LIU X M. Preventing CO-releasing systems from forming precipitates and tuning CO-releasing rate via ligand exchange reaction[J]. Chinese J. Inorg. Chem., 2022,38(8):1593-1600.  

    33. [33]

      Yang X Q, Jin J, Guo Z M, Xiao Z Y, Chen N W, Jiang X J, He Y, Liu X M. The monoiron anion fac-[Fe(CO)3I3]- and its organic aminium salts: Their preparation, CO-release, and cytotoxicity[J]. New J. Chem., 2020,44(25):10300-10308. doi: 10.1039/D0NJ01182G

    34. [34]

      Xiao Z Y, Jiang R, Jin J, Yang X Q, Xu B Y, Liu X M, He Y B, He Y. Diiron(Ⅱ) pentacarbonyl complexes as CO-releasing molecules: Their synthesis, characterization, CO-releasing behaviour and biocompatibility[J]. Dalton Trans., 2019,48(2):468-477. doi: 10.1039/C8DT03982H

    35. [35]

      Guo Z M, Jin J, Xiao Z Y, Chen N W, Jiang X J, Liu X M, Wu L F, He Y, Zhang S H. Four iron(Ⅱ) carbonyl complexes containing both pyridyl and halide ligands: Their synthesis, characterization, stability, and anticancer activity[J]. Appl. Organomet. Chem., 2021,35(1)e6045. doi: 10.1002/aoc.6045

    36. [36]

      Guo J Z, Guo Z M, Xiao Z Y, Jin J, Yang X Q, He Y, Liu X M. Further exploration of the reaction between cis-[Fe(CO)4I2] and alkylamines: An aminium salt of fac-[Fe(CO)3I3]- or an amine-bound complex of fac-[Fe(CO)3I2(NH2R)]?[J]. Organomet. Chem., 2021,35(8).

    37. [37]

      Xiao Z Y, Wei Z H, Long L, Wang Y L, Evans D J, Liu X M. Diiron carbonyl complexes possessing a {Fe(Ⅱ)Fe(Ⅱ)} core: Synthesis, characterisation, and electrochemical investigation[J]. Dalton Trans., 2011,40(16):4291-4299. doi: 10.1039/c0dt01465f

    38. [38]

      Hieber W, Bader G. Reaktionen und Derivate des Eisencarbonyls, II.: Neuartige Kohlenoxyd-Verbindungen von Eisenhalogeniden[J]. Ber. Dtsch. Chem. Ges., 1928,61(8):1717-1722. doi: 10.1002/cber.19280610825

    39. [39]

      Pankowski M, Bigorgne M. Syntheses and isomerization of halocarbonyliron complexes: [FeX(CO)5-nLn]+, FeX2(CO)4-nLn and[FeX3(CO)3]- (L=PMe3; n=1, 2, 3; X=Cl, Br, I)[J]. J. Organomet. Chem., 1977,125(2):231-252. doi: 10.1016/S0022-328X(00)89443-7

    40. [40]

      Szabo C. Gasotransmitters in cancer: From pathophysiology to experimental therapy[J]. Nat. Rev. Drug Discov., 2016,15(3):185-203. doi: 10.1038/nrd.2015.1

    41. [41]

      Wang X S, Zeng J Y, Li M J, Li Q R, Gao F, Zhang X Z. Highly stable iron carbonyl complex delivery nanosystem for improving cancer therapy[J]. ACS Nano, 2020,14(8):9848-9860. doi: 10.1021/acsnano.0c02516

    42. [42]

      Piantadosi C A. Carbon monoxide, reactive oxygen signaling, and oxidative stress[J]. Free Radic. Biol. Med., 2008,45(5):562-569. doi: 10.1016/j.freeradbiomed.2008.05.013

    43. [43]

      Zuckerbraun B S, Chin B Y, Bilban M, d'Avila J d C, Rao J, Billiar T R, Otterbein L E. Carbon monoxide signals via inhibition of cytochrome c oxidase and generation of mitochondrial reactive oxygen species[J]. Faseb J., 2007,21(4):1099-1106. doi: 10.1096/fj.06-6644com

    44. [44]

      Stockwell B R, Jiang X J. The chemistry and biology of ferroptosis[J]. Cell Chem. Biol., 2020,27(4):365-375. doi: 10.1016/j.chembiol.2020.03.013

    45. [45]

      Jiang X J, Stockwell B R, Conrad M. Ferroptosis: Mechanisms, biology and role in disease[J]. Nat. Rev. Mol. Cell Biol., 2021,22(4):266-282. doi: 10.1038/s41580-020-00324-8

    46. [46]

      Dixon S J, Lemberg K M, Lamprecht M R, Skouta R, Zaitsev E M, Gleason C E, Patel D N, Bauer A J, Cantley A M, Yang W S, Morrison B, Stockwell B R. Ferroptosis: An iron-dependent form of nonapoptotic cell death[J]. Cell, 2012,149(5):1060-1072. doi: 10.1016/j.cell.2012.03.042

    47. [47]

      Angeli J P F, Schneider M, Proneth B, Tyurina Y Y, Tyurin V A, Hammond V J, Herbach N, Aichler M, Walch A, Eggenhofer E, Basavarajappa D, Rådmark O, Kobayashi S, Seibt T, Beck H, Neff F, Esposito I, Wanke R, Förster H, Yefremova O, Heinrichmeyer M, Bornkamm G W, Geissler E K, Thomas S B, Stockwell B R, O'Donnell V B, Kagan V E, Schick J A, Conrad M. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice[J]. Nat. Cell Biol., 2014,16(12):1180-1191. doi: 10.1038/ncb3064

  • 加载中
    1. [1]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    2. [2]

      Pengcheng SuShizheng ChenZhihong YangNingning ZhongChenzi JiangWanbin Li . Vapor-phase postsynthetic amination of hypercrosslinked polymers for efficient iodine capture. Chinese Chemical Letters, 2024, 35(9): 109357-. doi: 10.1016/j.cclet.2023.109357

    3. [3]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    4. [4]

      Lin LiBingjun SunJin SunLin ChenZhonggui He . Binary prodrug nanoassemblies combining chemotherapy and ferroptosis activation for efficient triple-negative breast cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109538-. doi: 10.1016/j.cclet.2024.109538

    5. [5]

      Yajun HouChuanzheng ZhuQiang WangXiaomeng ZhaoKun LuoZongshuai GongZhihao Yuan . ~2.5 nm pores in carbon-based cathode promise better zinc-iodine batteries. Chinese Chemical Letters, 2024, 35(5): 108697-. doi: 10.1016/j.cclet.2023.108697

    6. [6]

      Xinyi CaoYucheng JinHailong WangXu DingXiaolin LiuBaoqiu YuXiaoning ZhanJianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201

    7. [7]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    8. [8]

      Long JinJian HanDongmei FangMin WangJian Liao . Pd-catalyzed asymmetric carbonyl alkynylation: Synthesis of axial chiral ynones. Chinese Chemical Letters, 2024, 35(6): 109212-. doi: 10.1016/j.cclet.2023.109212

    9. [9]

      Hao WangMeng-Qi PanYa-Fei WangChao ChenJian XuYuan-Yuan GaoChuan-Song QiWei LiXian-He Bu . Post-synthetic modifications of MOFs by different bolt ligands for controllable release of cargoes. Chinese Chemical Letters, 2024, 35(10): 109581-. doi: 10.1016/j.cclet.2024.109581

    10. [10]

      Xiping DongXuan WangZhixiu LuQinhao ShiZhengyi YangXuan YuWuliang FengXingli ZouYang LiuYufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605

    11. [11]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    12. [12]

      Zhongsen WangLijun QiuYunhua HuangMeng ZhangXi CaiFanyu WangYang LinYanbiao ShiXiao Liu . Alcohothermal synthesis of sulfidated zero-valent iron for enhanced Cr(Ⅵ) removal. Chinese Chemical Letters, 2024, 35(7): 109195-. doi: 10.1016/j.cclet.2023.109195

    13. [13]

      Xianzheng Zhang Yana Chen Zhiyong Ye Huilin Hu Ling Lei Feng You Junlong Yao Huan Yang Xueliang Jiang . Magnetic field-assisted microbial corrosion construction iron sulfides incorporated nickel-iron hydroxide towards efficient oxygen evolution. Chinese Journal of Structural Chemistry, 2024, 43(1): 100200-100200. doi: 10.1016/j.cjsc.2023.100200

    14. [14]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2023.100309

    15. [15]

      Xing TianDi WuWanheng WeiGuifu DaiZhanxian LiBenhua WangMingming Yu . A lipid droplets-targetable fluorescent probe for polarity detection in cells of iron death, inflammation and fatty liver tissue. Chinese Chemical Letters, 2024, 35(6): 108912-. doi: 10.1016/j.cclet.2023.108912

    16. [16]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    17. [17]

      Min FuPan HeSen ZhouWenqiang LiuBo MaShiying ShangYaohao LiRuihan WangZhongping Tan . An unexpected stereochemical effect of thio-substituted Asp in native chemical ligation. Chinese Chemical Letters, 2024, 35(8): 109434-. doi: 10.1016/j.cclet.2023.109434

    18. [18]

      Yixia ZhangCaili XueYunpeng ZhangQi ZhangKai ZhangYulin LiuZhaohui ShanWu QiuGang ChenNa LiHulin ZhangJiang ZhaoDa-Peng Yang . Cocktail effect of ionic patch driven by triboelectric nanogenerator for diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109196-. doi: 10.1016/j.cclet.2023.109196

    19. [19]

      Yuan DongMutian MaZhenyang JiaoSheng HanLikun XiongZhao DengYang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049

    20. [20]

      Botao GaoHe QiHui LiuJun Chen . Role of polarization evolution in the hysteresis effect of Pb-based antiferroelecrtics. Chinese Chemical Letters, 2024, 35(4): 108598-. doi: 10.1016/j.cclet.2023.108598

Metrics
  • PDF Downloads(0)
  • Abstract views(64)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return