Citation: Ruiqing LIU, Wenxiu LIU, Kun XIE, Yiran LIU, Hui CHENG, Xiaoyu WANG, Chenxu TIAN, Xiujing LIN, Xiaomiao FENG. Three-dimensional porous titanium nitride as a highly efficient sulfur host[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441 shu

Three-dimensional porous titanium nitride as a highly efficient sulfur host

Figures(8)

  • A simple, efficient, and scalable one-step high-temperature nitriding method was used to convert titanium dioxide into titanium nitride, meanwhile, the continuous three-dimensional porous network with good electrical conductivity and high porosity was formed under high-temperature sintering. As a highly efficient sulfur host, the continuous three-dimensional porous titanium nitride network not only effectively increases the electron transport path, enhances the electron transfer, and promotes the ion migration, but also strongly restricts the shuttle effect of lithium polysulfides from both physical limiting and chemisorption, and effectively increases the sulfur loading. The as-prepared sulfur cathode with high conductivity, high catalytic activity, and high sulfur loading shows high discharge capacity and excellent cyclic stability.
  • 加载中
    1. [1]

      Liu T F, Zhang Y P, Jiang Z G, Zeng X Q, Ji J P, Li Z H, Gao X H, Sun M H, Lin Z, Ling M, Zheng J C, Liang C D. Exploring competitive features of stationary sodium ion batteries for electrochemical energy storage[J]. Energy Environ. Sci., 2019,12:1512-1533. doi: 10.1039/C8EE03727B

    2. [2]

      SUN L, XIE J, CHENG F, CHEN R Y, ZHU Q L, JIN Z. Rapid construction of two-dimensional N, S-co-doped porous carbon for realizing high-performance lithium-sulfur batteries[J]. Chinese J. Inorg. Chem., 2022,38(6):1189-1198.  

    3. [3]

      Sun L, Liu Y X, Zhang K Q, Cheng F, Jiang R Y, Liu Y Q, Zhu J, Jin Z, Pang H. Rapid construction of highly-dispersed cobalt nanoclusters embedded in hollow cubic carbon walls as an effective polysulfide promoter in high-energy lithium-sulfur batteries[J]. Nano Res., 2022,15:5105-5113. doi: 10.1007/s12274-022-4134-8

    4. [4]

      Tang C, Li B Q, Zhang Q, Zhu L, Wang H F, Shi J L, Wei F. CaO-templated growth of hierarchical porous graphene for high-power lithium-sulfur battery applications[J]. Adv. Funct. Mater., 2016,26(4):577-585. doi: 10.1002/adfm.201503726

    5. [5]

      Kang W M, Deng N P, Ju J G, Li Q X, Wu D Y, Ma X M, Li L, Naebe M, Cheng B W. A review of recent developments in rechargeable lithium-sulfur batteries[J]. Nanoscale, 2016,8:16541-16588. doi: 10.1039/C6NR04923K

    6. [6]

      Chung S H, Manthiram A. A natural carbonized leaf as polysulfide diffusion inhibitor for high-performance lithium-sulfur battery cells[J]. ChemSusChem, 2014,7(6):1655-1661. doi: 10.1002/cssc.201301287

    7. [7]

      Choi C, Kim S, Kim R, Choi Y, Kim S, Jung H Y, Yang J H, Kim H T. A review of vanadium electrolytes for vanadium redox flow batteries[J]. Renew. Sust. Energ. Rev., 2017,69:263-274. doi: 10.1016/j.rser.2016.11.188

    8. [8]

      Hannan M A, Lipu M S H, Hussain A, Mohamed A. A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations[J]. Renew. Sust. Energ. Rev., 2017,78:834-854. doi: 10.1016/j.rser.2017.05.001

    9. [9]

      Fan X J, Sun W W, Meng F C, Xing A M, Liu J H. Advanced chemical strategies for lithium-sulfur batteries: A review[J]. Green Energy Environ., 2018,3(1):2-19. doi: 10.1016/j.gee.2017.08.002

    10. [10]

      Bresser D, Passerini S, Scrosati B. Recent progress and remaining challenges in sulfur-based lithium secondary batteries-a review[J]. Chem. Commun., 2013,49:10545-10562. doi: 10.1039/c3cc46131a

    11. [11]

      Li D, Han F, Wang S, Cheng F, Sun Q, Li W C. High sulfur loading cathodes fabricated using peapodlike, large pore volume mesoporous carbon for lithium-sulfur battery[J]. ACS Appl. Mater. Inter., 2013,5(6):2208-2213. doi: 10.1021/am4000535

    12. [12]

      He G, Evers S, Liang X, Cuisinier M, Garsuch A, Nazar L F. Tailoring porosity in carbon nanospheres for lithium-sulfur battery cathodes[J]. ACS Nano, 2013,7(12):10920-10930. doi: 10.1021/nn404439r

    13. [13]

      Song J X, Gordin M L, Xu T, Chen S R, Yu Z X, Sohn H, Lu J, Ren Y, Duan Y H, Wang D H. Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium-sulfur battery cathodes[J]. Angew. Chem. Int. Ed., 2015,54(14):4325-4329. doi: 10.1002/anie.201411109

    14. [14]

      Peng H J, Huang J Q, Cheng X B, Zhang Q. Review on high-loading and high-energy lithium-sulfur batteries[J]. Adv. Energy Mater., 2017,7(24)1700260. doi: 10.1002/aenm.201700260

    15. [15]

      Sun L, Jiang X W, Jin Z. Interfacial engineering of porous SiOx@C composite anodes toward high-performance lithium-ion batteries[J]. Chem. Eng. J., 2023,474145960. doi: 10.1016/j.cej.2023.145960

    16. [16]

      Seh Z W, Sun Y M, Zhang Q F, Cui Y. Designing high-energy lithium-sulfur batteries[J]. Chem. Soc. Rev., 2016,45:5605-5634. doi: 10.1039/C5CS00410A

    17. [17]

      Sun Q, Xi B J, Li J Y, Mao H Z, Ma X J, Liang J W, Feng J K, Xiong S L. Nitrogen-doped graphene-supported mixed transition-metal oxide porous particles to confine polysulfides for lithium-sulfur batteries[J]. Adv. Energy Mater., 2018,8(22)1800595. doi: 10.1002/aenm.201800595

    18. [18]

      Ma F, Liang J S, Wang T Y, Chen X, Fan Y N, Hultman B, Xie H, Han J T, Wu G, Li Q. Efficient entrapment and catalytic conversion of lithium polysulfides on hollow metal oxide submicro-spheres as lithium-sulfur battery cathodes[J]. Nanoscale, 2018,10:5634-5641. doi: 10.1039/C7NR09216D

    19. [19]

      Liang X, Kwok C Y, Lodi-Marzano F, Pang Q, Cuisinier M, Huang H, Hart C J, Houtarde D, Kaup K, Sommeret H, Brezesinski T, Janek J, Nazar L F. Tuning transition metal oxide-sulfur interactions for long life lithium sulfur batteries: The "goldilocks" principle[J]. Adv. Energy Mater., 2016,6(6)1501636. doi: 10.1002/aenm.201501636

    20. [20]

      Tao X Y, Wang J G, Liu C, Wang H T, Yao H B, Zheng G Y, Seh Z W, Cai Q X, Li W Y, Zhou G M, Zu C X, Cui Y. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design[J]. Nat. Commun., 2016,711203. doi: 10.1038/ncomms11203

    21. [21]

      MA X T, ZHOU X X, LI Y, LIU X X, GUO Q, DUAN D H, LIU S B. Controllable synthesis of N-doped porous carbon decorated with nano CoSe and catalytic effect on polysulfides conversion for Li-S battery[J]. Chinese J. Inorg. Chem., 2023,39(3):443-455.  

    22. [22]

      Sun L, Liu Y X, Xie J, Fan L L, Wu J, Jiang R Y, Jin Z. Polar Co9S8 anchored on pyrrole-modified graphene with in situ growth of CNTs as multifunctional self-supporting medium for efficient lithium‐ sulfur batteries[J]. Chem. Eng. J., 2023,451138370. doi: 10.1016/j.cej.2022.138370

    23. [23]

      Liu R Q, Liu W H, Bu Y L, Yang W W, Wang C, Priest C, Liu Z W, Wang Y Z, Chen J Y, Wang Y H, Cheng J, Lin X J, Feng X M, Wu G, Ma Y W, Huang W. Conductive porous laminated vanadium nitride as carbon-free hosts for high-loading sulfur cathodes in lithium-sulfur batteries[J]. ACS Nano, 2020,14:17308-17320. doi: 10.1021/acsnano.0c07415

    24. [24]

      NING D Z, SUN H G. Performance of the inward radial hollow TiN particles as cathodes for lithium-sulfur batteries[J]. Chinese J. Inorg. Chem., 2022,38(7):1375-1381.  

    25. [25]

      Li Z H, He Q, Xu X, Zhao Y, Liu X W, Zhou C, Ai D, Xia L X, Mai L Q. A 3D nitrogen-doped graphene/TiN nanowires composite as a strong polysulfide anchor for lithium-sulfur batteries with enhanced rate performance and high areal capacity[J]. Adv. Mater., 2018,301804089. doi: 10.1002/adma.201804089

    26. [26]

      Li X X, Ding K, Gao B, Li Q W, Li Y Y, Fu J J, Zhang X M, Chu P K, Huo K F. Freestanding carbon encapsulated mesoporous vanadium nitride nanowires enable highly stable sulfur cathodes for lithium-sulfur batteries[J]. Nano Energy, 2017,40:655-662. doi: 10.1016/j.nanoen.2017.09.018

    27. [27]

      Deng D R, Xue F, Jia Y J, Ye J C, Bai C D, Zheng M S, Dong Q F. Co4N nanosheet assembled mesoporous sphere as a matrix for ultrahigh sulfur content lithium-sulfur batteries[J]. ACS Nano, 2017,11:6031-6039. doi: 10.1021/acsnano.7b01945

  • 加载中
    1. [1]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    2. [2]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    3. [3]

      Tao WangQin DongCunpu LiZidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061

    4. [4]

      Yingtong ShiGuotong XuGuizeng LiangDi LanSiyuan ZhangYanru WangDaohao LiGuanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-0. doi: 10.1016/j.actphy.2025.100082

    5. [5]

      Yan'e LIUShengli JIAYifan JIANGQinghua ZHAOYi LIXinshu CHANG . MoO3/cellulose derived carbon aerogel: Fabrication and performance as cathode for lithium-sulfur battery. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1565-1573. doi: 10.11862/CJIC.20250054

    6. [6]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    7. [7]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    8. [8]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    9. [9]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    10. [10]

      Weicheng FengJingcheng YuYilan YangYige GuoGeng ZouXiaoju LiuZhou ChenKun DongYuefeng SongGuoxiong WangXinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013

    11. [11]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    12. [12]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    13. [13]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    14. [14]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    15. [15]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    16. [16]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    17. [17]

      Xiaoli CHENZhihong LUOYuzhu XIONGAihua WANGXue CHENJiaojing SHAO . Inhibitory effect of the interlayer of two-dimensional vermiculite on the polysulfide shuttle in lithium-sulfur batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1661-1671. doi: 10.11862/CJIC.20250075

    18. [18]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    19. [19]

      Lingbang QiuJiangmin JiangLibo WangLang BaiFei ZhouGaoyu ZhouQuanchao ZhuangYanhua CuiIn Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-0. doi: 10.1016/j.actphy.2024.100040

    20. [20]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

Metrics
  • PDF Downloads(2)
  • Abstract views(933)
  • HTML views(292)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return