Citation: Ruiqing LIU, Wenxiu LIU, Kun XIE, Yiran LIU, Hui CHENG, Xiaoyu WANG, Chenxu TIAN, Xiujing LIN, Xiaomiao FENG. Three-dimensional porous titanium nitride as a highly efficient sulfur host[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441 shu

Three-dimensional porous titanium nitride as a highly efficient sulfur host

Figures(8)

  • A simple, efficient, and scalable one-step high-temperature nitriding method was used to convert titanium dioxide into titanium nitride, meanwhile, the continuous three-dimensional porous network with good electrical conductivity and high porosity was formed under high-temperature sintering. As a highly efficient sulfur host, the continuous three-dimensional porous titanium nitride network not only effectively increases the electron transport path, enhances the electron transfer, and promotes the ion migration, but also strongly restricts the shuttle effect of lithium polysulfides from both physical limiting and chemisorption, and effectively increases the sulfur loading. The as-prepared sulfur cathode with high conductivity, high catalytic activity, and high sulfur loading shows high discharge capacity and excellent cyclic stability.
  • 加载中
    1. [1]

      Liu T F, Zhang Y P, Jiang Z G, Zeng X Q, Ji J P, Li Z H, Gao X H, Sun M H, Lin Z, Ling M, Zheng J C, Liang C D. Exploring competitive features of stationary sodium ion batteries for electrochemical energy storage[J]. Energy Environ. Sci., 2019,12:1512-1533. doi: 10.1039/C8EE03727B

    2. [2]

      SUN L, XIE J, CHENG F, CHEN R Y, ZHU Q L, JIN Z. Rapid construction of two-dimensional N, S-co-doped porous carbon for realizing high-performance lithium-sulfur batteries[J]. Chinese J. Inorg. Chem., 2022,38(6):1189-1198.  

    3. [3]

      Sun L, Liu Y X, Zhang K Q, Cheng F, Jiang R Y, Liu Y Q, Zhu J, Jin Z, Pang H. Rapid construction of highly-dispersed cobalt nanoclusters embedded in hollow cubic carbon walls as an effective polysulfide promoter in high-energy lithium-sulfur batteries[J]. Nano Res., 2022,15:5105-5113. doi: 10.1007/s12274-022-4134-8

    4. [4]

      Tang C, Li B Q, Zhang Q, Zhu L, Wang H F, Shi J L, Wei F. CaO-templated growth of hierarchical porous graphene for high-power lithium-sulfur battery applications[J]. Adv. Funct. Mater., 2016,26(4):577-585. doi: 10.1002/adfm.201503726

    5. [5]

      Kang W M, Deng N P, Ju J G, Li Q X, Wu D Y, Ma X M, Li L, Naebe M, Cheng B W. A review of recent developments in rechargeable lithium-sulfur batteries[J]. Nanoscale, 2016,8:16541-16588. doi: 10.1039/C6NR04923K

    6. [6]

      Chung S H, Manthiram A. A natural carbonized leaf as polysulfide diffusion inhibitor for high-performance lithium-sulfur battery cells[J]. ChemSusChem, 2014,7(6):1655-1661. doi: 10.1002/cssc.201301287

    7. [7]

      Choi C, Kim S, Kim R, Choi Y, Kim S, Jung H Y, Yang J H, Kim H T. A review of vanadium electrolytes for vanadium redox flow batteries[J]. Renew. Sust. Energ. Rev., 2017,69:263-274. doi: 10.1016/j.rser.2016.11.188

    8. [8]

      Hannan M A, Lipu M S H, Hussain A, Mohamed A. A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations[J]. Renew. Sust. Energ. Rev., 2017,78:834-854. doi: 10.1016/j.rser.2017.05.001

    9. [9]

      Fan X J, Sun W W, Meng F C, Xing A M, Liu J H. Advanced chemical strategies for lithium-sulfur batteries: A review[J]. Green Energy Environ., 2018,3(1):2-19. doi: 10.1016/j.gee.2017.08.002

    10. [10]

      Bresser D, Passerini S, Scrosati B. Recent progress and remaining challenges in sulfur-based lithium secondary batteries-a review[J]. Chem. Commun., 2013,49:10545-10562. doi: 10.1039/c3cc46131a

    11. [11]

      Li D, Han F, Wang S, Cheng F, Sun Q, Li W C. High sulfur loading cathodes fabricated using peapodlike, large pore volume mesoporous carbon for lithium-sulfur battery[J]. ACS Appl. Mater. Inter., 2013,5(6):2208-2213. doi: 10.1021/am4000535

    12. [12]

      He G, Evers S, Liang X, Cuisinier M, Garsuch A, Nazar L F. Tailoring porosity in carbon nanospheres for lithium-sulfur battery cathodes[J]. ACS Nano, 2013,7(12):10920-10930. doi: 10.1021/nn404439r

    13. [13]

      Song J X, Gordin M L, Xu T, Chen S R, Yu Z X, Sohn H, Lu J, Ren Y, Duan Y H, Wang D H. Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium-sulfur battery cathodes[J]. Angew. Chem. Int. Ed., 2015,54(14):4325-4329. doi: 10.1002/anie.201411109

    14. [14]

      Peng H J, Huang J Q, Cheng X B, Zhang Q. Review on high-loading and high-energy lithium-sulfur batteries[J]. Adv. Energy Mater., 2017,7(24)1700260. doi: 10.1002/aenm.201700260

    15. [15]

      Sun L, Jiang X W, Jin Z. Interfacial engineering of porous SiOx@C composite anodes toward high-performance lithium-ion batteries[J]. Chem. Eng. J., 2023,474145960. doi: 10.1016/j.cej.2023.145960

    16. [16]

      Seh Z W, Sun Y M, Zhang Q F, Cui Y. Designing high-energy lithium-sulfur batteries[J]. Chem. Soc. Rev., 2016,45:5605-5634. doi: 10.1039/C5CS00410A

    17. [17]

      Sun Q, Xi B J, Li J Y, Mao H Z, Ma X J, Liang J W, Feng J K, Xiong S L. Nitrogen-doped graphene-supported mixed transition-metal oxide porous particles to confine polysulfides for lithium-sulfur batteries[J]. Adv. Energy Mater., 2018,8(22)1800595. doi: 10.1002/aenm.201800595

    18. [18]

      Ma F, Liang J S, Wang T Y, Chen X, Fan Y N, Hultman B, Xie H, Han J T, Wu G, Li Q. Efficient entrapment and catalytic conversion of lithium polysulfides on hollow metal oxide submicro-spheres as lithium-sulfur battery cathodes[J]. Nanoscale, 2018,10:5634-5641. doi: 10.1039/C7NR09216D

    19. [19]

      Liang X, Kwok C Y, Lodi-Marzano F, Pang Q, Cuisinier M, Huang H, Hart C J, Houtarde D, Kaup K, Sommeret H, Brezesinski T, Janek J, Nazar L F. Tuning transition metal oxide-sulfur interactions for long life lithium sulfur batteries: The "goldilocks" principle[J]. Adv. Energy Mater., 2016,6(6)1501636. doi: 10.1002/aenm.201501636

    20. [20]

      Tao X Y, Wang J G, Liu C, Wang H T, Yao H B, Zheng G Y, Seh Z W, Cai Q X, Li W Y, Zhou G M, Zu C X, Cui Y. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design[J]. Nat. Commun., 2016,711203. doi: 10.1038/ncomms11203

    21. [21]

      MA X T, ZHOU X X, LI Y, LIU X X, GUO Q, DUAN D H, LIU S B. Controllable synthesis of N-doped porous carbon decorated with nano CoSe and catalytic effect on polysulfides conversion for Li-S battery[J]. Chinese J. Inorg. Chem., 2023,39(3):443-455.  

    22. [22]

      Sun L, Liu Y X, Xie J, Fan L L, Wu J, Jiang R Y, Jin Z. Polar Co9S8 anchored on pyrrole-modified graphene with in situ growth of CNTs as multifunctional self-supporting medium for efficient lithium‐ sulfur batteries[J]. Chem. Eng. J., 2023,451138370. doi: 10.1016/j.cej.2022.138370

    23. [23]

      Liu R Q, Liu W H, Bu Y L, Yang W W, Wang C, Priest C, Liu Z W, Wang Y Z, Chen J Y, Wang Y H, Cheng J, Lin X J, Feng X M, Wu G, Ma Y W, Huang W. Conductive porous laminated vanadium nitride as carbon-free hosts for high-loading sulfur cathodes in lithium-sulfur batteries[J]. ACS Nano, 2020,14:17308-17320. doi: 10.1021/acsnano.0c07415

    24. [24]

      NING D Z, SUN H G. Performance of the inward radial hollow TiN particles as cathodes for lithium-sulfur batteries[J]. Chinese J. Inorg. Chem., 2022,38(7):1375-1381.  

    25. [25]

      Li Z H, He Q, Xu X, Zhao Y, Liu X W, Zhou C, Ai D, Xia L X, Mai L Q. A 3D nitrogen-doped graphene/TiN nanowires composite as a strong polysulfide anchor for lithium-sulfur batteries with enhanced rate performance and high areal capacity[J]. Adv. Mater., 2018,301804089. doi: 10.1002/adma.201804089

    26. [26]

      Li X X, Ding K, Gao B, Li Q W, Li Y Y, Fu J J, Zhang X M, Chu P K, Huo K F. Freestanding carbon encapsulated mesoporous vanadium nitride nanowires enable highly stable sulfur cathodes for lithium-sulfur batteries[J]. Nano Energy, 2017,40:655-662. doi: 10.1016/j.nanoen.2017.09.018

    27. [27]

      Deng D R, Xue F, Jia Y J, Ye J C, Bai C D, Zheng M S, Dong Q F. Co4N nanosheet assembled mesoporous sphere as a matrix for ultrahigh sulfur content lithium-sulfur batteries[J]. ACS Nano, 2017,11:6031-6039. doi: 10.1021/acsnano.7b01945

  • 加载中
    1. [1]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    2. [2]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    3. [3]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    4. [4]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    5. [5]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    6. [6]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    7. [7]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    8. [8]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    9. [9]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    10. [10]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    11. [11]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    12. [12]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    13. [13]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    14. [14]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    15. [15]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    16. [16]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    17. [17]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    18. [18]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    19. [19]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    20. [20]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

Metrics
  • PDF Downloads(0)
  • Abstract views(59)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return