Citation: Yang YANG, Pengcheng LI, Zhan SHU, Nengrong TU, Zonghua WANG. Plasmon-enhanced upconversion luminescence and application of molecular detection[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440 shu

Plasmon-enhanced upconversion luminescence and application of molecular detection

Figures(4)

  • Fluorescence molecular detection exhibits limited development in detection applications due to generally low sensitivity and narrow detection range. The heavily doped semiconductor nanostructures Cu2-xS with surface plasmon resonance effect and typical rare-earth-doped upconversion luminescent nanoparticles NaYF4∶Yb, Er were prepared, and further Cu2-xS/NaYF4∶Yb, Er film substrates were obtained by three-phase interfacial self-assembly method. Combined with finite element method simulations, the local electric field distributions around Cu2-xS were calculated for different placement situations. The plasmon-coupling effect generated between Cu2-xS nanodisks was investigated on the upconversion luminescence performance and the Raman signals. Based on the intense upconversion luminescence caused by the excellent synergetic localized surface plasmon resonance effect, a dual detection method of qualitative before quantitative detection of Rhodamine B using surface-enhanced Raman scattering signal monitoring and fluorescence sensing was established. The results show that the coupling of the Cu2-xS plasmonic layer with the NaYF4∶Yb, Er luminescent layer not only enables three orders of magnitude improvement of upconversion emission, but also achieves the detection limit of 10-7 mol·L-1 for molecular detection and obtains a broad linear response from 10-3 to 10-7 mol·L-1, and finally realizes the qualitative and quantitative bifunctionality of high-sensitivity accurate detection.
  • 加载中
    1. [1]

      Jayabal S, Sathiyamurthi R, Ramaraj R. Selective sensing of Hg2+ ions by optical and colorimetric methods using gold nanorods embedded in a functionalized silicate sol-gel matrix[J]. J. Mater. Chem. A, 2014,2(23):8918-8925. doi: 10.1039/c4ta01363h

    2. [2]

      Pincella F, Isozaki K, Miki K. A visible light-driven plasmonic photocatalyst[J]. Light-Sci. Appl., 2014,3(1):110-118.

    3. [3]

      Zhou D L, Liu D L, Jin J J, Chen X, Xu W, Yin Z, Pan G C, Li D Y, Song H W. Semiconductor plasmon-sensitized broadband upconversion and its enhancement effect on the power conversion efficiency of perovskite solar cells[J]. J. Mater. Chem. A, 2017,5(32):16559-16567. doi: 10.1039/C7TA04943A

    4. [4]

      Wang H, Han X M, Ou X M, Lee C S, Zhang X H, Lee S T. Silicon nanowire based single-molecule SERS sensor[J]. Nanoscale, 2013,5(17):8172-8176. doi: 10.1039/c3nr01879b

    5. [5]

      He X, Wang H, Li Z B, Chen D, Liu J H, Zhang Q. Ultrasensitive SERS detection of trinitrotoluene through capillarity‐constructed reversible hot spots based on ZnO-Ag nanorod hybrids[J]. Nanoscale, 2015,7(18):8619-8626. doi: 10.1039/C4NR07655A

    6. [6]

      Dorfe D, Härding T, Miszta K, Bigall N C, Kim M R, Genovese A, Falqui A, Povia M, Manna L. Reversible tunability of the near-infrared valence band plasmon resonance in Cu2-xSe nanocrystals[J]. J. Am. Chem. Soc., 2011,133(29):11175-11180. doi: 10.1021/ja2016284

    7. [7]

      Kanehara M, Koike H, Yoshinaga T, Teranishi T. Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region[J]. J. Am. Chem. Soc., 2009,131(49):17736-17737. doi: 10.1021/ja9064415

    8. [8]

      Cheng H F, Kamegawa T, Mori K, Yamashita H. Surfactant-free nonaqueous synthesis of plasmonic molybdenum oxide nanosheets with enhanced catalytic activity for hydrogen generation from ammonia borane under visible light[J]. Angew. Chem. Int. Ed., 2014,53(11):2910-2914. doi: 10.1002/anie.201309759

    9. [9]

      Yang Y, Cong Y, Shang J, Liu Y, Dong B. NIR LSPR-coupling of Ag nanorices and W18O49 nanowires: Application of LRET and SERS[J]. Sens. Actuator. B-Chem., 2020,330(1)129199.

    10. [10]

      Hassairi M A, Dammak M, Zambon D, Chadeyron G, Mahiou R. Red-green-blue upconversion luminescence and energy transfer in Yb3+/Er3+/Tm3+ doped YP5O14 ultraphosphates[J]. J. Lumines., 2017,181(1):393-399.

    11. [11]

      Wu Q X, Xu Z, Wageh S, Al-Ghamdi A, Zhao S L. The dynamic variation of upconversion luminescence dependent on shell Yb3+ contents in NaYF4∶Yb3+, Tm3+@NaYF4∶Yb3+, Er3+ nanoparticles[J]. J. Alloy. Compd., 2022,891(6):162067-162073.

    12. [12]

      Chen Q S, Xie X J, Huang B L, Liang L L, Han S Y, Yi Z G, Wang Y, Li Y, Fan D Y, Huang L, Liu X G. Confining excitation energy in Er3+-sensitized upconversion nanocrystals through Tm3+-mediated transient energy trapping[J]. Angew. Chem. Int. Ed., 2017,56(26):7605-7609. doi: 10.1002/anie.201703012

    13. [13]

      Wang F, Deng R R, Wang J, Wang Q X, Han Y, Zhu H M, Chen X Y, Liu X G. Tuning upconversion through energy migration in core-shell nanoparticles[J]. Nat. Mater., 2011,10(12):968-973. doi: 10.1038/nmat3149

    14. [14]

      Berry M T, May P S. Disputed mechanism for NIR-to-Red upconversion luminescence in NaYF4∶Yb3+, Er3+[J]. J. Phys. Chem. A, 2015,119(38):9805-9811. doi: 10.1021/acs.jpca.5b08324

    15. [15]

      Zhou D L, Liu D L, Xu W, Yin Z, Chen X, Zhou P W, Cui S B, Chen Z G, Song H W. Observation of considerable upconversion enhancement induced by Cu2-xS plasmon nanoparticles[J]. ACS Nano, 2016,10(5):5169-5179. doi: 10.1021/acsnano.6b00649

    16. [16]

      Liu K C, Zhang Z Y, Shan C X, Feng Z Q, Li J S, Song C L, Bao Y N, Qi X H, Dong B. A flexible and superhydrophobic upconversion-luminescence membrane as an ultrasensitive fluorescence sensor for single droplet detection[J]. Light-Sci. Appl., 2016,5(1):535-541.

    17. [17]

      Du K M, Feng J, Gao X, Zhang H J. Nanocomposites based on lanthanide-doped upconversion nanoparticles: Diverse designs and applications[J]. Light-Sci. Appl., 2022,11(1)222. doi: 10.1038/s41377-022-00871-z

    18. [18]

      Liu D, Yang D, Gao Y, Ma J, Long R, Wang C, Xiong Y J. Flexible near-infrared photovoltaic devices based on plasmonic hot-electron injection into silicon nanowire arrays[J]. Angew. Chem. Int. Ed., 2016,55(14):4577-4581. doi: 10.1002/anie.201600279

    19. [19]

      Xu W, Lee T K, Moon B S, Song H W, Chen X, Chun B, Kim Y J, Kwak S K, Chen P, Kim D H. Broadband plasmonic antenna enhanced upconversion and its application in flexible fingerprint identification[J]. Adv. Opt. Mater., 2018,6(6)170119.

    20. [20]

      Zhang Z Y, Liu Y, Fang Y R, Cao B S, Huang J, Liu K C, Dong B. Near-infrared-plasmonic energy upconversion in a nonmetallic heterostructure for efficient H2 evolution from ammonia borane[J]. Adv. Sci., 2018,5(9)1800748.

    21. [21]

      He J J, Zheng W, Ligmajer F L, Chan C F, Bao Z Y, Wong K L, Chen X Y, Hao J H, Dai J Y, Yu S F, Lei D Y. Plasmonic enhancement and polarization dependence of nonlinear upconversion emissions from single gold nanorod@SiO2@CaF2∶Yb3+, Er3+ hybrid core-shell-satellite nanostructures[J]. Light-Sci. Appl., 2017,6e16217.

    22. [22]

      Zhou D L, Li D Y, Zhou X Y, Xu W, Chen X, Liu D L, Zhu Y S, Song H W. Semiconductor plasmon induced up-conversion enhancement in mCu2-xS@SiO2@Y2O3∶Yb3+/Er3+ core-shell nanocomposites[J]. ACS Appl. Mater. Interfaces, 2017,9(40):35226-35233.

    23. [23]

      Wei T X, Liu Y F, Dong W J, Zhang Y, Huang C Y, Sun Y, Chen X, Dai N. Surface-dependent localized surface plasmon resonances in CuS nanodisks[J]. ACS Appl. Mater. Interfaces, 2013,5(21):10473-10477.

    24. [24]

      Zilio P, Dipalo M, Tantussi F, Messina G C, De Angelis F. Hot electrons in water: Injection and ponderomotive acceleration by means of plasmonic nanoelectrodes[J]. Light-Sci. Appl., 2017,6(2):17002-1.

    25. [25]

      YANG Y, WANG Y, CONG Y, CHEN Y Q, HUANG Y C. Surface plasmon-enhanced upconversion luminescence properties of silver nano-rices[J]. Chinese J. Inorg. Chem., 2022,38(5):829-835.  

    26. [26]

      Yin Z, Li H, Xu W, Cui S B, Zhou D L, Chen X, Zhu Y S, Qin G S, Song H W. Local field modulation induced three-order upconversion enhancement: Combining surface plasmon effect and photonic crystal effect[J]. Adv. Mater., 2016,28(13):2518-2525.

    27. [27]

      Dong B, Song H W, Yu H Q, Zhang H, Qin R F, Bai X, Pan G H, Lu S Z, Wang F, Fan L B, Dai Q L. Upconversion properties of Ln3+ doped NaYF4/Polymer composite fibers prepared by electrospinning[J]. J. Phys. Chem. C, 2008,112(5):1435-1440.

    28. [28]

      Chen X, Chen Y T, Yan M, Qiu M. Nanosecond photothermal effects in plasmonic nanostructures[J]. ACS Nano, 2012,6(3):2550-2557.

    29. [29]

      Lee H K, Lee Y H, Zhang Q, Phang I Y, Tan J M R, Cui Y, Ling X Y. Superhydrophobic surface-enhanced raman scattering platform fabricated by assembly of Ag nanocubes for trace molecular sensing[J]. ACS Appl. Mater. Interfaces, 2013,5(21):11409-11418.

    30. [30]

      Li X, Lee H K, Phang I Y, Lee C K, Ling X Y. Superhydrophobic-oleophobic Ag nanowire platform: An analyte-concentrating and quantitative aqueous and organic toxin surface-enhanced raman scattering sensor[J]. Anal. Chem., 2014,86(20):10437-10444.

    31. [31]

      Yang Y, Cong Y, Lin X, Cao B S, Dong D P, Liu K C, Xiao Y, Shang J Y, Bao Y N, Liu Y, Fang G Q, Wang Y, Chen Y Q, Zhang J H, Dong B. Dual LSPR of Au/W18O49 heterostructures for upconversion enhancement and application of molecular detection[J]. J. Mater. Chem. A, 2020,8(7):4040-4048.

    32. [32]

      Déborah F, Cédric P, David B L, Philippe G, Virginie H. Adsorption of Rhodamine 6G on SiO2 and Ag@SiO2 porous solids: Coupling thermodynamics and Raman spectroscopy[J]. J. Phys. Chem. C, 2014,118(28):15308-15314.

    33. [33]

      Sharma H S S, Carmichael E, Mccall D. Fabrication of SERS substrate for the detection of Rhodamine 6G, glyphosate, melamine and salicylic acid[J]. Vib. Spectrosc., 2016,83(19):159-169.

  • 加载中
    1. [1]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    2. [2]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    3. [3]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    4. [4]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    5. [5]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    6. [6]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    7. [7]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    8. [8]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    9. [9]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    10. [10]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    11. [11]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    12. [12]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    13. [13]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

    14. [14]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

    15. [15]

      Xingmin ChenYunyun WuYao TangPeishen LiShuai GaoQiang WangWen LiuSihui Zhan . Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chinese Chemical Letters, 2024, 35(7): 109245-. doi: 10.1016/j.cclet.2023.109245

    16. [16]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    17. [17]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    18. [18]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    19. [19]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    20. [20]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

Metrics
  • PDF Downloads(0)
  • Abstract views(56)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return