Citation: Qiang ZHAO, Zhinan GUO, Shuying LI, Junli WANG, Zuopeng LI, Zhifang JIA, Kewei WANG, Yong GUO. Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435 shu

Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties

Figures(13)

  • A series of Cu2O/Bi2MoO6 photocatalysts with Z-type heterojunction were prepared by hydrothermal method. The morphology, structural properties, and photoelectrochemical properties of the catalyst were characterized by scanning electron microscopy, powder X-ray diffraction, IR spectroscopy, UV-Vis absorption spectroscopy, etc. The photocatalytic properties were investigated by tetracycline (TC) degradation. The experimental results showed that the photocatalytic performance of the composite was enhanced by adding Cu2O. Among them, 20% Cu2O/Bi2MoO6 composite (The mass ratio of Cu2O and Bi2MoO6 was 20%.) exhibited the best degradation efficiency and 95% of TC was degraded within 100 min. The possible mechanism of photocatalytic degradation of TC by the Cu2O/Bi2MoO6 composite was analyzed through free radical capture experiments and band structure analysis. The absorption of visible light is enhanced by the synergistic effect between Cu2O and Bi2MoO6 and the transfer pathway of electrons is changed by the constructed Z-type heterojunction. Thus, the separation efficiency of the electron-hole is improved and the photocatalytic activity is enhanced significantly.
  • 加载中
    1. [1]

      JIANG H L. Research progress on the application of photocatalysis in environmental pollutant treatment[J]. Resources Economization & Environmental Protection, 2021,3:130-131.  

    2. [2]

      ZHOU X, FENG T, GAO S T, YANG L L, WANG Z C, WANG N, LIU C Y, FENG C, SHANG N Z, WANG C. Visible-light responsive photocatalyst Ag/AgCl@NH2-UiO-66: Preparation and photocatalytic performance[J]. Chinese J. Inorg. Chem., 2016,32(5):769-776.  

    3. [3]

      YANG B Y, LI H, SHANG N Z, FENG C, GAO S T, WANG C. Visible-light responsive photocatalyst g-C3N4@BiOCl with hollow flower-like structure: Preparation and photocatalytic performance[J]. Chinese J. Inorg. Chem., 2017,33(3):396-404.  

    4. [4]

      Gao S T, Liu W H, Shao N Z, Feng C, Wu Q H, Wang Z, Wang C. Integration of a plasmonic semiconductor with a metal-organic framework: A case of Ag/AgCl@ZIF-8 with enhanced visible light photocatalytic activity[J]. RSC Adv., 2014,4:61736-61742. doi: 10.1039/C4RA11364K

    5. [5]

      Gao S T, Feng T, Feng C, Shang Z N, Wang C. Novel visible-light-responsive Ag/AgCl@MIL-101 hybrid materials with synergistic photocatalytic activity[J]. J. Colloid Interface Sci., 2016,466(15):284-290.

    6. [6]

      Wang W H, Gao W, Nie X H, Liu W H, Cheng X, Shang N Z, Gao S T, Wang C. Photocatalytic selective amines oxidation coupled with H2O2 production over hyper-cross-linked polymers[J]. J. Colloid Interface Sci., 2022,616(15):1-11.

    7. [7]

      Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting[J]. Chem. Soc. Rev., 2009,38(1):253-278.

    8. [8]

      Chen X B, Shen S H, Guo L J. Semiconductor-based photocatalytic hydrogen generation[J]. Chem. Rev., 2010,110(11):6503-6570.

    9. [9]

      Hao X Q, Jin Z L, Yang H, Lu G X, Bi Y P. Peculiar synergetic effect of MoS2 quantum dots and graphene on metal-organic frameworks for photocatalytic hydrogen evolution[J]. Appl. Catal. B-Environ., 2017,210:45-56.

    10. [10]

      Shi L, Wang T, Zhang H B, Chang K, Ye J H. Electrostatic self-assembly of nanosized carbon nitride nanosheet onto a zirconium metal-organic framework for enhanced photocatalytic CO2 reduction[J]. Adv. Funct. Mater., 2015,25(33):5360-5367.

    11. [11]

      Kush P, Deori K, Kumar A, Deka S. Efficient hydrogen/oxygen evolution and photocatalytic dye degradation and reduction of aqueous Cr􀃱 by surfactant free hydrophilic Cu2ZnSnS4 nanoparticles[J]. J. Mater. Chem. A, 2015,3(15):8098-8106.

    12. [12]

      Toe C Y, Zheng Z K, Wu H, Scott J, Amal R, Ng Y H. Photocorrosion of cuprous oxide in hydrogen production: Rationalizing self-oxidation or self-reduction[J]. Angew. Chem. Int. Ed., 2018,57(41):13613-13617.

    13. [13]

      Huang W C, Lyu L M, Yang Y C, Michael H. Synthesis of Cu2O nanocrystals from cubic to rhombic dodecahedral structures and their comparative photocatalytic activity[J]. J. Am. Chem. Soc., 2012,134(2):1261-1267.

    14. [14]

      CAI Q W, LÜ Y, ZHANG Z, LI W, LIU F, WANG Y Q, LIU C S. Photodegradation of refractory organic compounds by Cu2O@ZnO composite photocatalyst[J]. China Environmental Science, 2019,39(7):2822-2830.  

    15. [15]

      Wang W, Feng H M, Liu J G, Zhang M T, Liu S A, Feng C, Chen S G. A photo catalyst of cuprous oxide anchored MXene nanosheet for dramatic enhancement of synergistic antibacterial ability[J]. Chem. Eng. J., 2020,386124116.

    16. [16]

      Zhao Q, Wang J L, Li Z P, Guo Y, Tang B H, Abudula A, Guan G. Two-dimensional Ti3C2TX-nanosheets/Cu2O composite as a high-performance photocatalyst for decomposition of tetracycline[J]. Carbon Resources Convers., 2021,4:197-204.

    17. [17]

      Niu J, Song Z L, Gao X, Ji Y, Zhang Y L. Construction of Bi2WO6 composites with carbon-coated Cu2O for effective degradation of tetracycline[J]. J. Alloy. Compd., 2021,884(5)161292.

    18. [18]

      Zhao Q, Wang J L, Li Z P, Guo Y, Wang J, Tang B, Abudula A, Guan G Q. Heterostructured graphitic-carbon-nitride-nanosheets/copper(Ⅰ) oxide composite as an enhanced visible light photocatalyst for decomposition of tetracycline antibiotics[J]. Sep. Purif. Technol., 2020,250(1)117238.

    19. [19]

      Sekar K, Chuaicham C, Vellaichamy B, Li W, Zhuang W, Lu X H, Ohtani B, Sasaki K. Cubic Cu2O nanoparticles decorated on TiO2 nanofiber heterostructure as an excellent synergistic photocatalyst for H2 production and sulfamethoxazole degradation[J]. Appl. Catal. B-Environ., 2021,294(5)120221.

    20. [20]

      LI R, YAN X F, YU L M, DONG L, FENG Y Z. Dependence of micro/nano-Cu2O structures: Controlled morphology synthesis, and photocatalytic and antifouling property[J]. Chinese J. Inorg. Chem., 2014,30(10):2258-2269.  

    21. [21]

      JING T, DAI Y. Development of solid solution photocatalytic materials[J]. Acta Phys.-Chim. Sin., 2017,33(2):295-304.  

    22. [22]

      ZHOU X, ZHANG Z, CHEN P, YANG S J, YANG Y. Preparation and photocatalytic degradation performance of Br-doped Bi2WO6 microsphere[J]. Chinese J. Inorg. Chem., 2022,38(9):1716-1728.  

    23. [23]

      Shimodaira Y, Kato H, Kobayashi H, Kudo A. Photophysical properties and photocatalytic activities of bismuth molybdates under visible light irradiation[J]. J. Phys. Chem. B, 2006,110(36):17790-17797.

    24. [24]

      ZHANG Z, ZOU C T, YANG S J. Fabrication of semiconductor composite materials based on bismuth tungstate/molybdate and their application in photocatalytic degradation[J]. Prog. Chem., 2020,32(9):1427-1436.  

    25. [25]

      ZHANG X Y, CHEN P, ZHAO Y X, LI X J, YANG S J, YANG Y. Construction and photocatalytic properties of MOF-808/Bi2MoO6 composites[J]. Chinese J. Inorg. Chem., 2023,39(5):805-814.  

    26. [26]

      HU F X, DAI Y, YU G Y. Preparation and photocatalytic activity of cerium oxide/bismuth molybdate composite photocatalyst[J]. Chinese J. Inorg. Chem., 2019,35(3):433-441.  

    27. [27]

      Zhou Y, Xiang M H, Zhang J, Yao T T, Zhou Y H. Fabrication and mechanism of a novel photocatalyst UiO-66-NH2(Zr)/Bi2MoO6 heterojunction toward enhanced pollutant photodegradation[J]. J. Mater. Sci.-Mater. Electron., 2022,33:25950-25963.

    28. [28]

      Shen H D, Fu F, Xue W W, Yang X X, Ajmal S, Zhen Y Z, Guo L, Wang D J, Chi R. In situ fabrication of Bi2MoO6/Bi2MoO6-x homojunction photocatalyst for simultaneous photocatalytic phenol degradation and Cr􀃱 reduction[J]. J. Colloid Interface Sci., 2021,599:741-751.

    29. [29]

      Wang S Y, Ding X, Zhang X H, Pang H, Hai X, Zhan G M, Zhou W, Song H, Zhang L Z, Chen H, Ye J H. In situ carbon homogeneous doping on ultrathin bismuth molybdate: A dual-purpose strategy for efficient molecular oxygen activation[J]. Adv. Funct. Mater., 2017,27(47)1703923.

    30. [30]

      Wu J, Sun Y Y, Gu C H, Wang T, Xin Y J, Chai C, Cui C Y, Ma D. Pt supported and carbon coated Bi2MoO6 composite for enhanced 2,4-dibromophenol degradation under visible-light irradiation: Insight into band gap structure and photocatalytic mechanism[J]. Appl. Catal. B-Environ., 2018,237(5):622-632.

    31. [31]

      Jing K Q, Xiong J H, Qin N, Song Y J, Li L Y, Yu Y, Liang S J, Wu L. Development and photocatalytic mechanism of monolayer Bi2MoO6 nanosheets for the selective oxidation of benzylic alcohols[J]. Chem. Commun., 2017,53(61):8604-8607.

    32. [32]

      Yi J H, Zeng H X, Lin H, Li M H, Xie R K, Chen B F, Ding R S, Liu Z H, Li D H, Li N. Fabrication of direct Z-scheme Ag2O/Bi2MoO6 heterostructured microsphere with enhanced visible-light photocatalytic activity[J]. J. Alloy. Compd., 2023,935(P2)168151.

    33. [33]

      Wu L X, Hu J, Sun C, Jiao F P. Construction of Z-scheme CoAl-LDH/Bi2MoO6 heterojunction for enhanced photocatalytic degradation of antibiotics in natural water bodies[J]. Process Saf. Environ. Protect., 2022,168:1109-1119.

    34. [34]

      Zhang G X, Fang J G, Xu H R, Hu J M. Construction of Bi2MoO6/g-C3N4 heterostructures with enhanced visible light photocatalytic performance[J]. New J. Chem., 2021,45(43):20402-20409.

  • 加载中
    1. [1]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    2. [2]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    3. [3]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    4. [4]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    5. [5]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    6. [6]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    7. [7]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    8. [8]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    9. [9]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    10. [10]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    11. [11]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    12. [12]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    13. [13]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    14. [14]

      Meijuan ChenLiyun ZhaoXianjin ShiWei WangYu HuangLijuan FuLijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336

    15. [15]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    16. [16]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    17. [17]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    18. [18]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    19. [19]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    20. [20]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

Metrics
  • PDF Downloads(0)
  • Abstract views(37)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return