Citation: Rui PAN, Yuting MENG, Ruigang XIE, Daixiang CHEN, Jiefa SHEN, Shenghu YAN, Jianwu LIU, Yue ZHANG. Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433 shu

Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors

  • Corresponding author: Yue ZHANG, Zyjs@cczu.edu.cn
  • Received Date: 16 November 2023
    Revised Date: 15 March 2024

Figures(7)

  • Graphitic carbon nitride (CN)-based materials were synthesized using melamine, urea, guanidine carbonate, and thiourea as precursors via pyrolysis. The synthesized materials underwent comprehensive characterization employing techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption-desorption test. These materials were evaluated for their performance as cathodes with platinum sheet electrodes as anodes in the selective electrocatalytic reduction of Sn(Ⅳ) in an acid solution. During the reduction of Sn(Ⅳ) to Sn(Ⅱ), Sn(Ⅱ) can also be reduced to Sn due to the similar reduction potentials of Sn(Ⅱ) and Sn(Ⅳ). The deposition of Sn on the cathode diminishes the electrode conductivity efficiency. Therefore, the electrode material must fulfill the dual requirements of reducing Sn(Ⅳ) to Sn(Ⅱ) while preventing the reduction of Sn(Ⅱ) to Sn. In comparison to conventional cathode materials such as copper plates, graphite plates, ruthenium iridium titanium plates, and platinum plates, the CN demonstrated superior performance in the selective electrocatalytic reduction of Sn(Ⅳ) in an acidic solution. In addition, CN exhibited a lower potential in a dual-electrode electrolytic cell and maintained stability under acidic conditions, enabling the selective reduction of Sn(Ⅳ) to Sn(Ⅱ).
  • 加载中
    1. [1]

      Maślana K, Kaleńczuk R J, Zielińska B, Mijowska E. Synthesis and characterization of nitrogen-doped carbon nanotubes derived from g-C3N4[J]. Materials, 2020,13(6)1349. doi: 10.3390/ma13061349

    2. [2]

      Wen J Q, Xie J, Chen X B, Li X. A review on g-C3N4-based photocatalysts[J]. Appl. Surf. Sci., 2017,391:72-123. doi: 10.1016/j.apsusc.2016.07.030

    3. [3]

      Sahoo S, Acharya R. An overview of recent developments in synthesis and molecular level structure of visible-light responsive g-C3N4 photocatalyst towards environmental remediation[J]. Mater. Today: Proc., 2021,35:150-155. doi: 10.1016/j.matpr.2020.04.008

    4. [4]

      Wang Y, Li H R, Yao J, Wang X C, Antonietti M. Synthesis of boron doped polymeric carbon nitride solids and their use as metal-free catalysts for aliphatic C—H bond oxidation[J]. Chem. Sci., 2011,2(3):446-450. doi: 10.1039/C0SC00475H

    5. [5]

      Wang X C, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nat. Mater., 2009,8(1):76-80. doi: 10.1038/nmat2317

    6. [6]

      Wang Y, Yao J, Li H R, Su D S, Antonietti M. Highly selective hydrogenation of phenol and derivatives over a Pd@Carbon nitride catalyst in aqueous media[J]. J. Am. Chem. Soc., 2011,133(8):2362-2365. doi: 10.1021/ja109856y

    7. [7]

      Goettmann F, Fischer A, Antonietti M, Thomas A. Metal-free catalysis of sustainable Friedel-Crafts reactions: Direct activation of benzene by carbon nitrides to avoid the use of metal chlorides and halogenated compounds[J]. Chem. Commun., 2006(43):4530-4532. doi: 10.1039/B608532F

    8. [8]

      Zuo S Y, Zan J, Li D Y, Guan Z Y, Yang F, Xu H M, Huang M Z, Xia D S. Efficient peroxymonosulfate nonradical activity of Zn-Mn-Al2O3@ g-C3N4 via synergism of Zn, Mn doping and g-C3N4 composite[J]. Sep. Purif. Technol., 2021,272118965. doi: 10.1016/j.seppur.2021.118965

    9. [9]

      CUI H N, DONG W B, LIAO G L, ZHAO Z, YAO Y. Hydrogen evolution reaction performance of Se doped WO3·0.5H2O/g-C3N4 photo electrocatalyst[J]. Chinese J. Inorg. Chem., 2023,39(1):109-116.  

    10. [10]

      Artero V, Chavarot-Kerlidou M, Fontecave M. Splitting water with cobalt[J]. Angew. Chem. Int. Ed., 2011,50(32):7238-7266. doi: 10.1002/anie.201007987

    11. [11]

      Zheng Y, Liu J, Liang J, Jaroniec M, Qiao S Z. Graphitic carbon nitride materials: Controllable synthesis and applications in fuel cells and photocatalysis[J]. Energy Environ. Sci., 2012,5(5):6717-6731. doi: 10.1039/c2ee03479d

    12. [12]

      Yan S C, Li Z S, Zou Z G. Photodegradation performance of g-C3N4 fabricated by directly heating melamine[J]. Langmuir, 2009,25(17):10397-10401. doi: 10.1021/la900923z

    13. [13]

      Xing Y P, Wang X K, Hao S H, Zhang X L, Wang X, Ma W X, Zhao G, Xu X J. Recent advances in the improvement of g-C3N4 based photocatalytic materials[J]. Chin. Chem. Lett., 2021,32(1):13-20. doi: 10.1016/j.cclet.2020.11.011

    14. [14]

      Ye H, Gao K, Lu G N, Xie Y Y, Reinfelder J R, Huang W L, Tao X Q, Yi X Y, Dang Z. Improved extraction of acid-insoluble monosulfide minerals by stannous chloride reduction and its application to the separation of mono- and disulfide minerals in the presence of ferric iron[J]. Sci. Total Environ., 2021,785147367. doi: 10.1016/j.scitotenv.2021.147367

    15. [15]

      Rai G S, Jeong J M, Lee Y S, Kim H W, Lee D S, Chung J K, Lee M C. Ionic liquid mediated efficient reduction of nitroarenes using stannous chloride under sonication[J]. Tetrahedron Lett., 2005,46(23):3987-3990. doi: 10.1016/j.tetlet.2005.04.035

    16. [16]

      Zainal S F F S, Aziz H A, Omar F M, Alazaiza M Y D. Influence of jatropha curcas seeds as a natural flocculant on reducing Tin(Ⅳ) tetrachloride in the treatment of concentrated stabilised landfill leachate[J]. Chemosphere, 2021,285131484. doi: 10.1016/j.chemosphere.2021.131484

    17. [17]

      WANG L Y. The synthesis and application progress of stannous chloride[J]. Yunnan Chemical Technology, 2017,44(4):86-90.  

    18. [18]

      Kim B S, Lee J C, Yoon H S, Kim S K. Reduction of SnO2 with hydrogen[J]. Mater. Trans., 2011,52(9):1814-1817. doi: 10.2320/matertrans.M2011118

    19. [19]

      Lianyungang Jindun Agrochemical Co., Ltd. A method for reducing tin tetrachloride: CN201110081880.6. 2011-07-06.

    20. [20]

      Zhang Y C, Zhang Q, Shi Q W, Cai Z Y, Yang Z J. Acid-treated g-C3N4 with improved photocatalytic performance in the reduction of aqueous Cr(Ⅳ) under visible-light[J]. Sep. Purif. Technol., 2015,142:251-257. doi: 10.1016/j.seppur.2014.12.041

    21. [21]

      Tan Kah Kee Innovation Laboratory. A method and reaction device for electrochemical reduction of tin tetrachloride: CN202110901086.5. 2022-04-05.

    22. [22]

      Wang Y H, Liu L Z, Ma T Y, Zhang Y H, Huang H W. 2D graphitic carbon nitride for energy conversion and storage[J]. Adv. Funct. Mater., 2021,31(34)2102504.

    23. [23]

      Cao S W, Low J X, Yu J G, Jaroniec M. Polymeric photocatalysts based on graphitic carbon nitride[J]. Adv. Mater., 2015,27(13):2150-2176. doi: 10.1002/adma.201500033

    24. [24]

      Gao J, Zhou Y, Li Z S, Yan S C, Wang N Y, Zou Z G. High-yield synthesis of millimetre-long, semiconducting carbon nitride nanotubes with intense photoluminescence emission and reproducible photoconductivity[J]. Nanoscale, 2012,4(12)3687. doi: 10.1039/c2nr30777d

    25. [25]

      Fleysher M H. The electrometric titration of antimony and tin by potassium dichromate[J]. J. Am. Chem. Soc., 1924,46(12):2725-2727. doi: 10.1021/ja01677a017

    26. [26]

      Collins R W, Nebergall W H. Indirect procedure for the determination of tin(Ⅱ) by potentiometric titration[J]. Anal. Chem., 1962,34(11):1511-1513. doi: 10.1021/ac60191a049

    27. [27]

      Jorge A B, Martin D J, Dhanoa M T S, Rahman A S, Makwana N, Tang J W, Sella A, Corà F, Firth S, Darr J A, McMillan P F. H2 and O2 evolution from water half-splitting reactions by graphitic carbon nitride materials[J]. J. Phys. Chem. C, 2013,117(14):7178-7185. doi: 10.1021/jp4009338

    28. [28]

      Zhang J S, Chen X F, Takanabe K, Maeda K, Domen K, Epping J D, Fu X Z, Antonietti M, Wang X C. Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization[J]. Angew. Chem., 2010,49(2):441-444. doi: 10.1002/anie.200903886

    29. [29]

      Wang S Z, Liu Y, Wang J L. Iron and sulfur co-doped graphite carbon nitride (FeOy/S-g-C3N4) for activating peroxymonosulfate to enhance sulfamethoxazole degradation[J]. Chem. Eng. J., 2020,382122836. doi: 10.1016/j.cej.2019.122836

    30. [30]

      Tai G Y, Li G, Cai Z Y, Pan Y W, Han J G, Shi J, Xing W N, Wu G Y. Enhanced performance and recyclability for peroxymonosulfate activation via controlling the different morphologies of g-C3N4[J]. Colloids Surf. A, 2023,674131925. doi: 10.1016/j.colsurfa.2023.131925

    31. [31]

      Yang X L, Qian F F, Zou G J, Li M L, Lu J R, Li Y M, Bao M T. Facile fabrication of acidified g-C3N4/g-C3N4 hybrids with enhanced photocatalysis performance under visible light irradiation[J]. Appl. Catal. B-Environ., 2016,193:22-35. doi: 10.1016/j.apcatb.2016.03.060

    32. [32]

      Wang J L, Wang S Z. A critical review on graphitic carbon nitride (g-C3N4)-based materials: Preparation, modification and environmental application[J]. Coord. Chem. Rev., 2022,453214338. doi: 10.1016/j.ccr.2021.214338

    33. [33]

      Dong Y G, Wang D H, Zhang H, Chen Y, Liu W, Wang Y Z. Morphological control of tubular g-C3N4 and their visible-light photocatalytic properties[J]. Mater. Lett., 2017,196:100-103. doi: 10.1016/j.matlet.2017.03.005

    34. [34]

      Li J X, Wang Y H, Wang Y T, Guo Y, Zhang S D, Song H X, Li X C, Gao Q Q, Shang W Y, Hu S S, Zheng H B, Li X F. MXene Ti3C2 decorated g-C3N4/ZnO photocatalysts with improved photocatalytic performance for CO2 reduction[J]. Nano Mater. Sci., 2023,5(2):237-245. doi: 10.1016/j.nanoms.2023.02.003

    35. [35]

      Ma L T, Fan H Q, Fu K, Lei S H, Hu Q Z, Huang H T, He G P. Protonation of graphitic carbon nitride (g-C3N4) for an electrostatically self-assembling carbon@g-C3N4 core-shell nanostructure toward high hydrogen evolution[J]. ACS Sustain. Chem. Eng., 2017,5(8):7093-7103. doi: 10.1021/acssuschemeng.7b01312

    36. [36]

      Anadebe V C, Chukwuike V I, Selvaraj V, Pandikumar A, Barik R C. Sulfur-doped graphitic carbon nitride (S-g-C3N4) as an efficient corrosion inhibitor for X65 pipeline steel in CO2-saturated 3.5% NaCl solution: Electrochemical, XPS and nanoindentation studies[J]. Process Saf. Environ. Prot., 2022,164:715-728. doi: 10.1016/j.psep.2022.06.055

    37. [37]

      Saka C. Performance of g-C3N4 nanoparticles by EDTA modification and protonation for hydrogen release from sodium borohydride methanolysis[J]. Int. J. Hydrog. Energy, 2022,47(28):13654-13663. doi: 10.1016/j.ijhydene.2022.02.121

    38. [38]

      Chang J, Bard A J. Detection of the Sn(Ⅲ) Intermediate and the mechanism of the Sn(Ⅳ)/Sn(Ⅱ) electroreduction reaction in bromide media by cyclic voltammetry and scanning electrochemical microscopy[J]. J. Am. Chem. Soc., 2014,136(1):311-320. doi: 10.1021/ja409958a

  • 加载中
    1. [1]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    2. [2]

      Jiahao XieJin LiuBin LiuXin MengZhuang CaiXiaoqin XuCheng WangShijie YouJinlong Zou . Yolk shell-structured pyrite-type cobalt sulfide grafted by nitrogen-doped carbon-needles with enhanced electrical conductivity for oxygen electrocatalysis. Chinese Chemical Letters, 2024, 35(7): 109236-. doi: 10.1016/j.cclet.2023.109236

    3. [3]

      Pingfan ZhangShihuan HongNing SongZhonghui HanFei GeGang DaiHongjun DongChunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073

    4. [4]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    5. [5]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

    6. [6]

      Fabrice Nelly HabarugiraDucheng YaoWei MiaoChengcheng ChuZhong ChenShun Mao . Synergy of sodium doping and nitrogen defects in carbon nitride for promoted photocatalytic synthesis of hydrogen peroxide. Chinese Chemical Letters, 2024, 35(8): 109886-. doi: 10.1016/j.cclet.2024.109886

    7. [7]

      Chao-Long ChenRong ChenLa-Sheng LongLan-Sun ZhengXiang-Jian Kong . Anchoring heterometallic cluster on P-doped carbon nitride for efficient photocatalytic nitrogen fixation in water and air ambient. Chinese Chemical Letters, 2024, 35(4): 108795-. doi: 10.1016/j.cclet.2023.108795

    8. [8]

      Wengao ZengYuchen DongXiaoyuan YeZiying ZhangTuo ZhangXiangjiu GuanLiejin Guo . Crystalline carbon nitride with in-plane built-in electric field accelerates carrier separation for excellent photocatalytic hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109252-. doi: 10.1016/j.cclet.2023.109252

    9. [9]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    10. [10]

      Yuan DongMutian MaZhenyang JiaoSheng HanLikun XiongZhao DengYang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049

    11. [11]

      Yuhao MaYufei ZhouMingchuan YuCheng FangShaoxia YangJunfeng Niu . Covalently bonded ternary photocatalyst comprising MoSe2/black phosphorus nanosheet/graphitic carbon nitride for efficient moxifloxacin degradation. Chinese Chemical Letters, 2024, 35(9): 109453-. doi: 10.1016/j.cclet.2023.109453

    12. [12]

      Zhenyu HuZhenchun YangShiqi ZengKun WangLina LiChun HuYubao Zhao . Cationic surface polarization centers on ionic carbon nitride for efficient solar-driven H2O2 production and pollutant abatement. Chinese Chemical Letters, 2024, 35(10): 109526-. doi: 10.1016/j.cclet.2024.109526

    13. [13]

      Jin LongXingqun ZhengBin WangChenzhong WuQingmei WangLishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354

    14. [14]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    15. [15]

      Naihong Wang Longkang Zhang Yejun Guan Peng Wu Hao Xu . Pt confined in Sn-ECNU-46 zeolite for efficient alkane dehydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100248-100248. doi: 10.1016/j.cjsc.2024.100248

    16. [16]

      Wenzhong ZhangZirui YanLingcheng ChenYi Xiao . Sn-fused perylene diimides: Synthesis, mechanism, and properties. Chinese Chemical Letters, 2024, 35(10): 109582-. doi: 10.1016/j.cclet.2024.109582

    17. [17]

      Qiongqiong WanYanan XiaoGuifang FengXin DongWenjing NieMing GaoQingtao MengSuming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775

    18. [18]

      Qianqian SongYunting ZhangJianli LiangSi LiuJian ZhuXingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797

    19. [19]

      Daheng WenWeiwei FangYongmei LiuTao Tu . Valorization of carbon dioxide with alcohols. Chinese Chemical Letters, 2024, 35(7): 109394-. doi: 10.1016/j.cclet.2023.109394

    20. [20]

      Kun Tang Yu-Wu Zhong . Water reduction by an organic single-chromophore photocatalyst. Chinese Journal of Structural Chemistry, 2024, 43(8): 100376-100376. doi: 10.1016/j.cjsc.2024.100376

Metrics
  • PDF Downloads(0)
  • Abstract views(71)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return