Citation: Lu XU, Chengyu ZHANG, Wenjuan JI, Haiying YANG, Yunlong FU. Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431 shu

Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol

Figures(12)

  • Based on the rigid benzene polycarboxylic acid H4BPTC (biphenyl-3, 3′, 5, 5′-tetracarboxylic acid), a 3D rigid zinc-based metal-organic framework with high-density free carboxyl oxygen modified pore walls, {[Zn2(BPTC) (H2O) (DMF)2]·DMF·H2O}n (SXNU-5-Zn), has been constructed. SXNU-5-Zn exhibited good acid-base stability within a pH range of 3-8 and excellent thermal stability. An electrochemical sensor, SXNU-5-Zn/GCE, based on a pure MOF material was constructed, which can detect paracetamol (AC) with high sensitivity and selectivity. The linear detection range spans from 0.02 to 765 μmol·L-1, with a limit of detection as low as 0.013 8 μmol·L-1 (S/N= 3). Furthermore, the prepared SXNU-5-Zn/GCE sensor has been successfully utilized to determine the AC content in compound acetaminophen tablets as an actual sample.
  • 加载中
    1. [1]

      Bateman D N, Dear J W. Acetylcysteine in paracetamol poisoning: A perspective of 45 years of use[J]. Toxicology, 2019,8(4):489-498. doi: 10.1039/C9TX00002J

    2. [2]

      McCrae J C, Morrison E E, Maclntyre I M, Dear J W, Webb D J. Long-term adverse effects of paracetamol—A review[J]. Br. J. Clin. Pharmacol., 2018,84(10):2218-2230. doi: 10.1111/bcp.13656

    3. [3]

      Wang P, Yuan X X, Cui Z, Xu C Y, Sun Z L, Li J H, Liu J S, Tian Y, Li H D. A nanometer-sized graphite/boron-doped diamond electrochemical sensor for sensitive detection of acetaminophen[J]. ACS Omega, 2021,6(9):6326-6334. doi: 10.1021/acsomega.0c06141

    4. [4]

      Fan Y, Liu J H, Lu H T, Zhang Q. Electrochemical behavior and voltammetric determination of paracetamol on Nafion/TiO2-graphene modified glassy carbon electrode[J]. Colloid Surf. B-Biointerfaces, 2011,85(2):289-292. doi: 10.1016/j.colsurfb.2011.02.041

    5. [5]

      Chen Y X, Wu X, Huang K J. A sandwich-type electrochemical biosensing platform for microRNA-21 detection using carbon sphere-MoS2 and catalyzed hairpin assembly for signal amplification[J]. Sens. Actuator B-Chem., 2018,270:179-186. doi: 10.1016/j.snb.2018.05.031

    6. [6]

      Wang Y H, He L L, Huang K J, Chen Y X, Wang S Y, Liu Z H, Li D. Recent advances in nanomaterial-based electrochemical and optical sensing platforms for microRNA assays[J]. Analyst, 2019,144(9):2849-2866. doi: 10.1039/C9AN00081J

    7. [7]

      Qin L, Zheng Q M, Hu Q, Dou Y, Ni G, Ye T Q, Zhang M D. Selectively sensing and dye adsorption properties of one Zn(Ⅱ) architecture based on a rigid biphenyltetracarboxylate ligand[J]. J. Solid State Chem., 2020,284121216. doi: 10.1016/j.jssc.2020.121216

    8. [8]

      CHEN X L, LIU L, SHANG L, CAI M, CUI H L, YANG H, WANG J J. A highly sensitive and multi-responsive Zn-MOF fluorescent sensor for detection of Fe3+, 2, 4, 6-trinitrophenol, and ornidazole[J]. Chinese J. Inorg. Chem., 2022,38(4):735-744.  

    9. [9]

      Chen L Y, Rangan S, Li J, Jiang H F, Li Y W. A molecular Pd(Ⅱ) complex incorporated into a MOF as a highly active single-site heterogeneous catalyst for C-Cl bond activation[J]. Green Chem., 2014,16(8):3978-3985. doi: 10.1039/C4GC00314D

    10. [10]

      Mohan B, Singh G, Chauhan A, Pombeiro A J, Ren P. Metal-organic frameworks (MOFs) based luminescent and electrochemical sensors for food contaminant detection[J]. J. Hazard. Mater., 2023,453131324. doi: 10.1016/j.jhazmat.2023.131324

    11. [11]

      Hu X W, Yin Y H, Liu W, Zhang X W, Zhang H X. Cobalt phosphide nanocage@ferric-zinc mixed-metal phosphide nanotube hierarchical nanocomposites for enhanced overall water splitting[J]. Chin. J. Catal., 2019,40(7):1085-1092. doi: 10.1016/S1872-2067(19)63299-7

    12. [12]

      Ma B L, Guo H, Wang M Y, Li L, Jia X Y, Chen H Q, Xue R, Yang W. Electrocatalysis of Cu-MOF/graphene composite and its sensing application for electrochemical simultaneous determination of dopamine and paracetamol[J]. Electroanalysis, 2019,31(6):1002-1008. doi: 10.1002/elan.201800890

    13. [13]

      Yao M S, Lv X J, Fu Z H, Li W H, Deng W H, Wu G D, Xu G. Layer-by-layer assembled conductive metal-organic framework nanofilms for room-temperature chemiresistive sensing[J]. Angew. Chem. Int. Ed., 2017,56(52):16510-16514. doi: 10.1002/anie.201709558

    14. [14]

      Sharma A, Lim J, Jeong S, Won S, Seong J, Lee S, Lah M S. Superprotonic conductivity of MOF-808 achieved by controlling the binding mode of grafted sulfamate[J]. Angew. Chem., 2021,133(26):14455-14459. doi: 10.1002/ange.202103191

    15. [15]

      Gao W, Huang H, Zhou A M, Wei H, Liu J P, Zhang X M. Three 3D Ln-MOFs based on a nitro-functionalized biphenyltricarboxylate ligand: Syntheses, structures, and magnetic properties[J]. CrystEngComm, 2020,22(2):267-274. doi: 10.1039/C9CE01245A

    16. [16]

      Del Castillo-Velilla I, Sousaraei A, Romero-Muñiz I, Castillo-Blas C, SJ Méndez A, Oropeza F E, Platero-Prats A E. Synergistic binding sites in a metal-organic framework for the optical sensing of nitrogen dioxide[J]. Nat. Commun., 2023,14(1)2506. doi: 10.1038/s41467-023-38170-9

    17. [17]

      Tang J, Liu Y, Hu J Q, Zheng S B, Wang X C, Zhou H P, Jin B K. Co-based metal-organic framework nanopinnas composite doped with Ag nanoparticles: A sensitive electrochemical sensing platform for simultaneous determination of dopamine and acetaminophen[J]. Microchem. J., 2020,155104759. doi: 10.1016/j.microc.2020.104759

    18. [18]

      Liu W L, Ye L H, Liu X F, Yuan L M, Jiang J X, Yan C G. Hydrothermal syntheses, structures and luminescent properties of d10 metal-organic frameworks based on rigid 3, 3', 5, 5'-azobenzenetetracarboxylic acid[J]. CrystEngComm, 2008,10(10):1395-1403. doi: 10.1039/b806360e

    19. [19]

      Chen Z F, Zhang Z L, Tan Y H, Tang Y Z, Fun H K, Zhou Z Y, Abrahams B F, Liang H. Coordination polymers constructed by linking metal ions with azodibenzoate anions[J]. CrystEngComm, 2008,10(2):217-231. doi: 10.1039/B709587B

    20. [20]

      Lin X, Jia J H, Zhao X B, Thomas K M, Blake A J, Walker G S, Champness N R, Hubberstey P, Schröder M. High H2 adsorption by coordination-framework materials[J]. Angew. Chem., 2006,118(44):7518-7524. doi: 10.1002/ange.200601991

    21. [21]

      Zhang R J, Wang J J, Xu H, Zhu Z H, Zheng T F, Peng Y, Chen J L, Liu S J, Wen H R. Stable Cd-based metal-organic framework as a multiresponsive luminescent sensor for acetylacetone, salicylaldehyde, and benzaldehyde with high sensitivity and selectivity[J]. Cryst. Growth Des., 2023,23:5564-5570. doi: 10.1021/acs.cgd.3c00185

    22. [22]

      (a) Spek A L. PLATON, A multipurpose crystallographic tool. Utrecht University, The Netherlands, 2002.
      (b)Spek A L. Single - crystal structure validation with the program PLATON. J. Appl. Crystallogr., 2003, 36: 7-13

    23. [23]

      Wang X Q, Yang N N, Li Q Q, He F, Yang Y F, Wu B H, Chu J, Zhou A N, Xiong S X. Solvothermal synthesis of flower-string-like NiCo-MOF/MWCNT composites as a high-performance supercapacitor electrode material[J]. J. Solid State Chem., 2019,277:575-586. doi: 10.1016/j.jssc.2019.07.019

    24. [24]

      Zhang J, Ma J L, Zhang S B, Wang W C, Chen Z D. A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles decorated carbon spheres[J]. Sens. Actuator B-Chem., 2015,211:385-391. doi: 10.1016/j.snb.2015.01.100

    25. [25]

      Cui H F, Ye J S, Zhang W D, Li C M, Luong J H T, Sheu F S. Selective and sensitive electrochemical detection of glucose in neutral solution using platinum-lead alloy nanoparticle/carbon nanotube nanocomposites[J]. Anal. Chim. Acta, 2007,594(2):175-183. doi: 10.1016/j.aca.2007.05.047

    26. [26]

      Rajendrachari S, Adimule V, Gulen M, Khosravi F, Somashekharappa K K. Synthesis and characterization of high entropy alloy 23Fe-21Cr-18Ni-20Ti-18Mn for electrochemical sensor applications[J]. Materials, 2022,15(21)7591. doi: 10.3390/ma15217591

    27. [27]

      Fernández L, Borrás C, Carrero H. Electrochemical behavior of phenol in alkaline media at hydrotalcite-like clay/anionic surfactants/glassy carbon modified electrode[J]. Electrochim. Acta, 2006,52(3):872-884. doi: 10.1016/j.electacta.2006.06.021

    28. [28]

      Kalambate P K, Sanghavi B J, Karna S P, Srivastava A K. Simultaneous voltammetric determination of paracetamol and domperidone based on a graphene/platinum nanoparticles/Nafion composite modified glassy carbon electrode[J]. Sens. Actuator B-Chem., 2015,213:285-294. doi: 10.1016/j.snb.2015.02.090

    29. [29]

      YANG G W, LI J P. Determination of profenofos by bimetal-organic framework MOF-808 (Zr/Ce) mimic enzyme electrochemical sensor[J]. Chin. J. Anal. Chem., 2023,51(7):1112-1121.  

    30. [30]

      Shalauddin M, Akhter S, Basirun W J, Lee V S, Marlinda A R, Ahmed S R, Rajabzadeh A R, Srinivasan S. Bimetallic metal organic framework anchored multi-layer black phosphorous nanosheets with enhanced electrochemical activity for paracetamol detection[J]. Electrochim. Acta, 2023,454142423. doi: 10.1016/j.electacta.2023.142423

    31. [31]

      Karimi-Maleh H, Yola M L, Atar N, Orooji Y, Karimi F, Kumar P S, Rouhi J, Baghayeri M. A novel detection method for organophosphorus insecticide fenamiphos: Molecularly imprinted electrochemical sensor based on core-shell Co3O4@ MOF-74 nanocomposite[J]. J. Colloid Interface Sci., 2021,592:174-185. doi: 10.1016/j.jcis.2021.02.066

    32. [32]

      Guo L N, Hao L, Zhang Y F, Yang X M, Wang Q Q, Wang Z, Wang C. Metal-organic framework precursors derived Ni-doping porous carbon spheres for sensitive electrochemical detection of acetaminophen[J]. Talanta, 2021,228122228. doi: 10.1016/j.talanta.2021.122228

    33. [33]

      Zahed M A, Barman S C, Toyabur R M, Sharifuzzaman M, Xuan X, Nah J, Park J Y. Ex situ hybridized hexagonal cobalt oxide nanosheets and RGO@ MWCNT based nanocomposite for ultra-selective electrochemical detection of ascorbic acid, dopamine, and uric acid[J]. J. Electrochem. Soc., 2019,166(6):B304-B311. doi: 10.1149/2.0131906jes

    34. [34]

      Shalauddin M, Akhter S, Basirun W J, Lee V S, Johan M R. A metal free nanosensor based on nanocellulose-polypyrrole matrix and single-walled carbon nanotube: Experimental study and electroanalytical application for determination of paracetamol and ciprofloxacin[J]. Environ. Technol., 2022,18100691.

    35. [35]

      Wang H Y, Xie A J, Li S J, Wang J J, Chen K X, Su Z L, Song N N, Luo S P. Three-dimensional g-C3N4/MWNTs/GO hybrid electrode as electrochemical sensor for simultaneous determination of ascorbic acid, dopamine and uric acid[J]. Anal. Chim. Acta, 2022,1211339907. doi: 10.1016/j.aca.2022.339907

    36. [36]

      Jamal R, Liu Y C, Abdurexit A, Sawut N, Yan Y Q, Ali A, Abdiryim T. Electrochemical sensor for detection of paracetamol based on pendent nitrogen heterocyclic ring-functionalized polyterthiophene derivatives[J]. ChemistrySelect, 2021,6(18):4473-4481. doi: 10.1002/slct.202100065

    37. [37]

      Manoj D, Rajendran S, Hoang T K, Ansar S, Joo S W, Vasseghian Y, Soto-Moscoso M. In-situ growth of 3D Cu-MOF on 1D halloysite nanotubes/reduced graphene oxide nanocomposite for simultaneous sensing of dopamine and paracetamol[J]. J. Ind. Eng. Chem., 2022,112:287-295. doi: 10.1016/j.jiec.2022.05.022

    38. [38]

      Vinay M M, Nayaka Y A. Iron oxide (Fe2O3) nanoparticles modified carbon paste electrode as an advanced material for electrochemical investigation of paracetamol and dopamine[J]. J. Sci. Adv. Mater. Dev., 2019,4(3):442-450.

    39. [39]

      Matt S B, Raghavendra S, Shivanna M, Sidlinganahalli M, Siddalingappa D M. Electrochemical detection of paracetamol by voltammetry techniques using pure zirconium oxide nanoparticle based modified carbon paste electrode[J]. J. Inorg. Organomet. Polym., 2021,31:511-519. doi: 10.1007/s10904-020-01743-y

    40. [40]

      Zhang X, Wang K P, Zhang L N, Zhang Y C, Shen L. Phosphorus-doped graphene-based electrochemical sensor for sensitive detection of acetaminophen[J]. Anal. Chim. Acta, 2018,1036:26-32. doi: 10.1016/j.aca.2018.06.079

    41. [41]

      Shalauddin M, Akhter S, Basirun W J, Lee V S, Marlinda A R, Ahmed S R, Rajabzadeh A R, Srinivasan S. Bimetallic metal organic framework anchored multi-layer black phosphorous nanosheets with enhanced electrochemical activity for paracetamol detection[J]. Electrochim. Acta, 2023,454142423. doi: 10.1016/j.electacta.2023.142423

  • 加载中
    1. [1]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    2. [2]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    3. [3]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    4. [4]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    5. [5]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    6. [6]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    7. [7]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    8. [8]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    9. [9]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    10. [10]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    11. [11]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    12. [12]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    13. [13]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    14. [14]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    15. [15]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    16. [16]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    17. [17]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    18. [18]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    19. [19]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    20. [20]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

Metrics
  • PDF Downloads(0)
  • Abstract views(59)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return