Citation: Anqiu LIU, Long LIN, Dezhi ZHANG, Junyu LEI, Kefeng WANG, Wei ZHANG, Junpeng ZHUANG, Haijun HAO. Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424 shu

Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate

Figures(4)

  • Treatment of ArNHCH2CH2OH (HL, Ar=2,6-Me2C6H3) with AlMe3 and ZnEt2 resulted in the formation of a bi-aluminum complex, [(Me2Al)(L)]2 (1), and a tetra-zinc complex, [EtZn2(L)3]2 (2), respectively. They were characterized by elemental analysis, NMR, and single-crystal X-ray diffraction analysis. Complex 1 is a crystallographically centrosymmetric dimer with an Al2O2 core in the solid state, while a Zn4O6 core is observed in 2, which can be viewed as two side-by-side cubes missing a pair of opposite vertices. Preliminary catalytic activity tests indicated that the aluminum complex 1 was inactive for the ring-opening polymerization (ROP) of ε-caprolactone, while the zinc complex 2 was a highly active initiator for the ROP of ε-caprolactone and could control the molecular weight distribution of the resulted polymers in narrow ranges.
  • 加载中
    1. [1]

      Chen Y, Hung S T, Chou E, Wu H S. Review of polyhydroxyalkanoates materials and other biopolymers for medical applications[J]. Mini Rev. Org. Chem., 2018,15:105-121. doi: 10.2174/1570193X14666170721153036

    2. [2]

      Wei Y, Wang S, Zhou S. Aluminum alkyl complexes: Synthesis, structure, and application in ROP of cyclic esters[J]. Dalton Trans., 2016,45:4471-4485. doi: 10.1039/C5DT04240B

    3. [3]

      Gao J, Zhu D, Zhang W, Solan G A, Ma Y, Sun W H. Recent progress in the application of group 1, 2 & 13 metal complexes as catalysts for the ring opening polymerization of cyclic esters[J]. Inorg. Chem. Front., 2019,6:2619-2652.

    4. [4]

      Théron B, Vaillant-Coindard V, Balan C, Rousselin Y, Bayardon J, Malacea-Kabbara R, Gendre P L. Al and Zn phenoxy-amidine complexes for lactide ROP catalysis[J]. Dalton Trans., 2023,52:7854-7868. doi: 10.1039/D3DT01216F

    5. [5]

      LI W L, YAN B, SUN C G, SHEN Q M, LIU W Q, MA X L, YANG Z. Aluminum amine compound protected by β-diketiminate ligand: Preparation and enhanced performance as catalyst for ring-opening polymerization of ε-caprolactone[J]. Chinese J. Inorg. Chem., 2021,37:151-156. doi: 10.11862/CJIC.2021.007

    6. [6]

      Glöckler E, Kapp L, Wölper C, Schumacher M, Gröschel A H, Schulz S. Homoleptic and heteroleptic ketodiiminate zinc complexes for the ROP of cyclic L-lactide[J]. RSC Adv., 2023,13:29879-29885. doi: 10.1039/D3RA06529D

    7. [7]

      Chen M T, Chen C T. An unprecedented Zn10O4 heteroadamantane cage containing anilido-pyridinate ligand and its activity for ring opening polymerization of L-lactide and ε-caprolactone[J]. Dalton Trans., 2017,46:10181-10184. doi: 10.1039/C7DT01925D

    8. [8]

      Bouyahyi M, Duchateau R. Metal-based catalysts for controlled ring-opening polymerization of macrolactones: High molecular weight and well-defined copolymer architectures[J]. Macromolecules, 2014,47:517-524. doi: 10.1021/ma402072t

    9. [9]

      Albertsson A C, Varma I K. Recent developments in ring opening polymerization of lactones for biomedical applications[J]. Biomacromolecules, 2003,4:1466-1486. doi: 10.1021/bm034247a

    10. [10]

      Dechy-Cabaret O, Martin-Vaca B, Bourissou D. Controlled ring-opening polymerization of lactide and glycolide[J]. Chem. Rev., 2004,104:6147-6176. doi: 10.1021/cr040002s

    11. [11]

      Darensbourg D J, Karroonnirun O. Stereoselective ring-opening polymerization of rac-lactides catalyzed by chiral and achiral aluminum half-salen complexes[J]. Organometallics, 2010,29:5627-5634. doi: 10.1021/om100518e

    12. [12]

      Zhang C, Wang Z X. Aluminum and zinc complexes supported by functionalized phenolate ligands: Synthesis, characterization and catalysis in the ring-opening polymerization of ε-caprolactone and rac-lactide[J]. J. Organomet. Chem., 2008,693:3151-3158. doi: 10.1016/j.jorganchem.2008.07.002

    13. [13]

      Press K, Goldberg I, Kol M. Mechanistic insight into the stereochemical control of lactide polymerization by salan-aluminum catalysts[J]. Angew. Chem. Int. Ed., 2015,54:14858-1486. doi: 10.1002/anie.201503111

    14. [14]

      Cross E D, Allan L E N, Decken A, Shaver M P. Aluminum salen and salan complexes in the ring-opening polymerization of cyclic esters: Controlled immortal and copolymerization of rac-β-butyrolactone and rac-lactide[J]. J. Polym. Sci. Part A: Polym. Chem., 2013,51:1137-1146. doi: 10.1002/pola.26476

    15. [15]

      Pepels M P F, Bouyahyi M, Heise A, Duchateau R. Kinetic investigation on the catalytic ring-opening (co)polymerization of (macro)lactones using aluminum salen catalysts[J]. Macromolecules, 2013,46:4324-4334. doi: 10.1021/ma400731c

    16. [16]

      Yang X Z, Wang L, Yao L H, Zhang J F, Tang N, Wang C, Wu J C. Synthesis, characterization of bulky aluminium alkoxide and application in the ring-opening polymerization of ε-caprolactone[J]. Inorg. Chem. Commun., 2011,14:1711-1714. doi: 10.1016/j.inoche.2011.07.012

    17. [17]

      Liao T C, Huang Y L, Huang B H, Lin C C. Alcoholysis of methyl aluminium biphenoxides: Excellent initiators for the ring opening polymerisation of ε-caprolactone[J]. Macromol. Chem. Phys., 2003,204:885-892. doi: 10.1002/macp.200390054

    18. [18]

      Qiao S, Ma W A, Wang Z X. Synthesis and characterization of aluminum and zinc complexes supported by pyrrole-based ligands and catalysis of the aluminum complexes toward the ring-opening polymerization of ε-caprolactone[J]. J. Organomet. Chem., 2011,696:2746-2753. doi: 10.1016/j.jorganchem.2011.04.028

    19. [19]

      Liu Y, Dong W S, Liu J Y, Li Y S. Living ring-opening homo- and copolymerisation of ε-caprolactone and L-lactide by cyclic β-ketiminato aluminium complexes[J]. Dalton Trans., 2014,43:2244-2251. doi: 10.1039/C3DT52712C

    20. [20]

      Xiao L, Zhao Y, Qiao S, Sun Z, Santoro O, Redshaw C. Synthesis and structures of mono- and dinuclear aluminium and zinc complexes bearing α-diimine and related ligands, and their use in the ring opening polymerization of cyclic esters[J]. Dalton Trans., 2020,49:1456-1472. doi: 10.1039/C9DT04332B

    21. [21]

      Chuang H J, Chen H L, Huang B H, Tsai T E, Huang P L, Liao T T, Lin C C. Efficient zinc initiators supported by NNO-tridentate ketiminate ligands for cyclic esters polymerization[J]. J. Polym. Sci. Part A: Polym. Chem., 2013,51:1185-1196. doi: 10.1002/pola.26486

    22. [22]

      Huang T L, Chen C T. Aluminium complexes containing pyrazolyl-phenolate ligands as catalysts for ring opening polymerization of ε-caprolactone[J]. J. Organomet. Chem., 2013,725:15-21. doi: 10.1016/j.jorganchem.2012.12.003

    23. [23]

      Sun W H, Shen M, Zhang W, Huang W, Liu S, Redshaw C. Methylaluminium 8-quinolinolates: synthesis, characterization and use in ring-opening polymerization (ROP) of ε-caprolactone[J]. Dalton Trans., 2011,40:2645-2653. doi: 10.1039/c0dt01207f

    24. [24]

      Chen C T, Liao C H, Peng K F, Chen M T, Huang T L. Synthesis, characterization and catalytic studies of aluminium complexes containing sulfonamido-oxazolinate or - pyrazolinate ligands[J]. J. Organomet. Chem., 2014,753:9-19. doi: 10.1016/j.jorganchem.2013.12.022

    25. [25]

      Ma W A, Wang Z X. Zinc and aluminum complexes supported by quinoline-based N, N, N-chelate ligands: Synthesis, characterization, and catalysis in the ring-opening polymerization of ε-caprolactone and rac-lactide[J]. Organometallics, 2011,30:4364-4373. doi: 10.1021/om200423g

    26. [26]

      Yu X F, Wang Z X, Han Z Y. Synthesis and structural characterisation of dinuclear aluminium complexes supported by NNO-tridentate Schiff-base ligands and their catalysis in the ring-opening polymerisation of ε-caprolactone[J]. ChemistrySelect, 2021,6:3403-3408. doi: 10.1002/slct.202100635

    27. [27]

      Gao B, Duan R L, Pang X, Li X, Qu Z, Shao H L, Wang X H, Chen X S. Zinc complexes containing asymmetrical N, N, O-tridentate ligands and their application in lactide polymerization[J]. Dalton Trans., 2013,42:16334-16342. doi: 10.1039/c3dt52016a

    28. [28]

      Chen C T, Chan C Y, Huang C A, Chen M T, Peng K F. Zinc anilido-oxazolinate complexes as initiators for ring opening polymerization[J]. Dalton Trans., 2007:4073-4078.

    29. [29]

      Montag M, Milstein D. Catalytic main-group metal complexes of phosphine-based pincer ligands[J]. Isr. J. Chem., 2023,63e202300082. doi: 10.1002/ijch.202300082

    30. [30]

      HUANG Q D, LI C L, ZHANG Y, CUI L S, ZHU B C, YI J J, LIU L, HAO H J. Synthesis and catalytic activity of aluminum complexes supported by bis(β-ketimine) and bis(β-diketimine) ligands[J]. Chem. J. Chinese Universities, 2014,35:524-530. doi: 10.7503/cjcu20130664

    31. [31]

      Zelga K, Pietrzak T, Han T, Justyniak I, Chwojnowska E, Sobota P, Lewiński J. Effectiveness of the oxygenation over classical protonolysis reactions: A case of alkylzinc complexes incorporating an aminoalcoholate ligand[J]. Chem.-Eur. J., 2021,27:14234-14239. doi: 10.1002/chem.202102172

    32. [32]

      Rhodes B, Chien J C W, Wood J S, Chandrasekaran A, Rausch M D. Synthesis of titanium(Ⅳ) complexes containing 2,6-dimethylaniline substituted amino alcohols and their utilization in ethylene polymerizations[J]. J. Organomet. Chem., 2001,625:95-100. doi: 10.1016/S0022-328X(00)00907-4

    33. [33]

      Nakano K, Nozaki K, Hiyama T. Asymmetric alternating copolymerization of cyclohexene oxide and CO2 with dimeric zinc complexes[J]. J. Am. Chem. Soc., 2003,125:5501-5510. doi: 10.1021/ja028666b

    34. [34]

      Cao F, Wang Y, Wang X, Zhang W J, Solan G A, Wang R, Ma Y P, Hao X, Sun W H. Zinc 8-aminotrihydroquinolines appended with pendant N-diphenylphosphinoethyl arms as exceptionally active catalysts for the ROP of ε-CL[J]. Catal. Sci. Technol., 2022,12:6687-6703. doi: 10.1039/D2CY00979J

  • 加载中
    1. [1]

      Yue SunLiming YangYaohang ChengGuanghui AnGuangming Li . Pd(I)-catalyzed ring-opening arylation of cyclopropyl-α-aminoamides: Access to α-ketoamide peptidomimetics. Chinese Chemical Letters, 2024, 35(6): 109250-. doi: 10.1016/j.cclet.2023.109250

    2. [2]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    3. [3]

      Xinzhi Ding Chong Liu Jing Niu Nan Chen Shutao Xu Yingxu Wei Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247

    4. [4]

      Zhenjie YangChenyang HuXuan PangXuesi Chen . Sequence design in terpolymerization of ε-caprolactone, CO2 and cyclohexane oxide: Random ester-carbonate distributions lead to large-span tunability. Chinese Chemical Letters, 2024, 35(5): 109340-. doi: 10.1016/j.cclet.2023.109340

    5. [5]

      Mengjun SunZhi WangJvhui JiangXiaobing WangChuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393

    6. [6]

      Yunyu ZhaoChuntao YangYingjian Yu . A review on covalent organic frameworks for rechargeable zinc-ion batteries. Chinese Chemical Letters, 2024, 35(7): 108865-. doi: 10.1016/j.cclet.2023.108865

    7. [7]

      Lumin ZhengYing BaiChuan Wu . Multi-electron reaction and fast Al ion diffusion of δ-MnO2 cathode materials in rechargeable aluminum batteries via first-principle calculations. Chinese Chemical Letters, 2024, 35(4): 108589-. doi: 10.1016/j.cclet.2023.108589

    8. [8]

      Yajun HouChuanzheng ZhuQiang WangXiaomeng ZhaoKun LuoZongshuai GongZhihao Yuan . ~2.5 nm pores in carbon-based cathode promise better zinc-iodine batteries. Chinese Chemical Letters, 2024, 35(5): 108697-. doi: 10.1016/j.cclet.2023.108697

    9. [9]

      Jie ZhouQuanyu LiXiaomeng HuWeifeng WeiXiaobo JiGuichao KuangLiangjun ZhouLibao ChenYuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143

    10. [10]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    11. [11]

      Jiayu BaiSongjie HuLirong FengXinhui JinDong WangKai ZhangXiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326

    12. [12]

      Ningning ZhaoYuyan LiangWenjie HuoXinyan ZhuZhangxing HeZekun ZhangYoutuo ZhangXianwen WuLei DaiJing ZhuLing WangQiaobao Zhang . Separator functionalization enables high-performance zinc anode via ion-migration regulation and interfacial engineering. Chinese Chemical Letters, 2024, 35(9): 109332-. doi: 10.1016/j.cclet.2023.109332

    13. [13]

      Shaojie Ding Henan Wang Xiaojing Dai Yuru Lv Xinxin Niu Ruilian Yin Fangfang Wu Wenhui Shi Wenxian Liu Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302

    14. [14]

      Xiaoxing JiXiaojuan LiChenggang WangGang ZhaoHongxia BuXijin Xu . NixB/rGO as the cathode for high-performance aqueous alkaline zinc-based battery. Chinese Chemical Letters, 2024, 35(10): 109388-. doi: 10.1016/j.cclet.2023.109388

    15. [15]

      Peiyan ZhuYanyan YangHui LiJinhua WangShiqing Li . Rh(Ⅲ)‐Catalyzed sequential ring‐retentive/‐opening [4 + 2] annulations of 2H‐imidazoles towards full‐color emissive imidazo[5,1‐a]isoquinolinium salts and AIE‐active non‐symmetric 1,1′‐biisoquinolines. Chinese Chemical Letters, 2024, 35(10): 109533-. doi: 10.1016/j.cclet.2024.109533

    16. [16]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    17. [17]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    18. [18]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    19. [19]

      Jun GuoZhenbang ZhuangWanqiang LiuGang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803

    20. [20]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

Metrics
  • PDF Downloads(0)
  • Abstract views(60)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return