Citation: Yue WANG, Zhizhi GU, Jingyi DONG, Jie ZHU, Cunguang LIU, Guohan LI, Meichen LU, Jian HAN, Shengnan CAO, Wei WANG. Effects of kelp-derived carbon dots on embryonic development of zebrafish[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(6): 1209-1217. doi: 10.11862/CJIC.20230423 shu

Effects of kelp-derived carbon dots on embryonic development of zebrafish

Figures(7)

  • Common algae kelp in aquaculture was utilized as a raw material and synthesized biomass carbon dots through a green, convenient, and efficient hydrothermal method. This approach ensures environmentally friendly and pollution-free production from raw material selection to material synthesis. Zebrafish model organisms were selected as research objects to explore the fluorescence imaging and metabolism of different concentrations of carbon dots during the development of zebrafish embryos. Furthermore, the effect of carbon dots on zebrafish embryo development including hatching rate, heart rate, and survival rate of adult fish were studied to evaluate kelp-derived carbon dots' biosafety.
  • 加载中
    1. [1]

      Abraham J E, Balachandran M. Fluorescent mechanism in zero-dimensional carbon nanomaterials: A review[J]. J. Fluoresc., 2022,32(3):887-906. doi: 10.1007/s10895-022-02915-4

    2. [2]

      Abdella A A, El-Malla S F. Environmentally benign sensing platform for label free detection of Fe3+ and tobramycin using highly fluorescent carbon dots valorized from sweet potato roasting residues[J]. Microchem J., 2023,191108844. doi: 10.1016/j.microc.2023.108844

    3. [3]

      Jansen M, Tisdale W A, Wood V. Nanocrystal phononics[J]. Nat. Mater., 2023,22(2):161-169. doi: 10.1038/s41563-022-01438-4

    4. [4]

      Olla C, Cappai A, Porcu S, Stagi L, Fantauzzi M, Casula M F, Mocci F, Corpino R, Chiriu D, Ricci P C, Carbonaro C M. Exploring the impact of nitrogen doping on the optical properties of carbon dots synthesized from citric acid[J]. Nanomaterials, 2023,13(8)1344. doi: 10.3390/nano13081344

    5. [5]

      Swain T D, Westneat M W, Backman V, Marcelino L A. Phylogenetic analysis of symbiont transmission mechanisms reveal evolutionary patterns in thermotolerance and host specificity that enhance bleaching resistance among vertically transmitted symbiodinium[J]. Eur. J. Phycol., 2018,53:443-459. doi: 10.1080/09670262.2018.1466200

    6. [6]

      Kosionis S G, Kontakos A, Paspalakis E. The effect of the core on the absorption in a hybrid semiconductor quantum dot-metal nanoshell system[J]. Appl. Sci.-Basel, 2023,13(2)1160. doi: 10.3390/app13021160

    7. [7]

      Chen L Y, Zhang Y Y, Duan B H, Gu Z Z, Guo Y T, Wang H F, Duan C Y. Carbon dots prepared in different solvents with controllable structures: Optical properties, cellular imaging and photocatalysis[J]. New J. Chem., 2023,42(3):1690-1697.

    8. [8]

      Lee S G, Kim E H, Ma B C. Monitoring chemical accidents in industrial complexes using tower-installed infrared system for remote chemical detection and long-range video[J]. Appl. Sci., 2023,13(3)1544. doi: 10.3390/app13031544

    9. [9]

      Ravichandiran P, Boguszewska-Czubara A, Masłyk M, Bella A P, Johnson P M, Subramaniyan S A, Shim K S, Yoo D J. A phenoxazine-based fluorescent chemosensor for dual channel detection of Cd2+ and CN- ions and its application to bio-imaging in live cells and zebrafish[J]. Dyes Pigment., 2020,172107828. doi: 10.1016/j.dyepig.2019.107828

    10. [10]

      Xu J, Chen M X, Li M L, Xu S H, Liu H L. Integration of chemotherapy and phototherapy based on a pH/ROS/NIR multi-responsive polymer-modified MSN drug delivery system for improved antitumor cells efficacy[J]. Colloid Surf. A-Physicochem. Eng. Asp., 2023,663131015. doi: 10.1016/j.colsurfa.2023.131015

    11. [11]

      Wang B Y, Cai H J, Waterhouse G I N, Qu X L, Yang B, Lu S Y. Carbon dots in bioimaging, biosensing and therapeutics: A comprehensive review[J]. Small Sci., 2022,2(6)2200012. doi: 10.1002/smsc.202200012

    12. [12]

      Xu X Y, Ray R, Gu Y L, Ploehn H J, Gearheart L, Raker K, Scrivens W A. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J]. J. Am. Chem. Soc., 2004,126(40):12736-123737. doi: 10.1021/ja040082h

    13. [13]

      Sun Y P, Zhou B, Lin Y, Wang W, Fernando K A S, Pathak P, Meziani M J, Harruff B A, Wang X, Wang H F, Luo P J G, Yang H, Kose M E, Chen B L, Veca L M, Xie S Y. Quantum-sized carbon dots for bright and colorful photoluminescence[J]. J. Am. Chem. Soc., 2006,128(24):7756-7756. doi: 10.1021/ja062677d

    14. [14]

      Hong G S, Diao S O, Antaris A L, Dai H J. Carbon nanomaterials for biological imaging and nanomedicinal therapy[J]. Chem. Rev., 2015,115(19):10816-10906. doi: 10.1021/acs.chemrev.5b00008

    15. [15]

      Zoghbi L, Argeiti C, Skliros D, Flemetakis E, Koutinas A, Pateraki C, Ladakis D. Circular PHB production via paraburkholderia sacchari cultures using degradation monomers from PHB-based post-consumer bioplastics as carbon sources[J]. Biochem. Eng. J., 2023,191108808. doi: 10.1016/j.bej.2023.108808

    16. [16]

      Farki N N A N L T, Abdulhameed A S, Surip S N, ALOthman Z A, Jawad A H. Tropical fruit wastes including durian seeds and rambutan peels as a precursor for producing activated carbon using H3PO4- assisted microwave method: RSM-BBD optimization and mechanism for methylene blue dye adsorption[J]. Int. J. Phytoremediat., 2023,25(12):1567-1578. doi: 10.1080/15226514.2023.2175780

    17. [17]

      Varatharajan P, Banu I B S, Mamat M H, Vasimalai N. Hydrothermal synthesis of orange fluorescent carbon dots and their application in fabrication of warm WLEDs and fluorescent ink[J]. Physica B, 2023,654414703. doi: 10.1016/j.physb.2023.414703

    18. [18]

      Qu H R, Wu X J, Fortner J, Kim M, Wang P, Wang Y H. Reconfiguring organic color centers on the sp2 carbon lattice of single-walled carbon nanotubes[J]. ACS nano, 2022,16(2):2077-2087. doi: 10.1021/acsnano.1c07669

    19. [19]

      Li L L, Ji J, Fei R, Wang C Z, Lu Q, Zhang J R, Jiang L P, Zhu J J. A facile microwave avenue to electrochemiluminescent two-color graphene quantum dots[J]. Adv. Funct. Mater., 2012,22(14):2971-2979. doi: 10.1002/adfm.201200166

    20. [20]

      He H H, Zhou Y F, Yang F Y, Luo X H, Jin Z N A, Li Z F, Jin M. Investigation on synthesis and luminescent properties of red-emitting carbon dots chemically functionalized by branched-polyethylenimine[J]. J. Mater. Sci.-Mater. Electron., 2022,33:23418-23426. doi: 10.1007/s10854-022-09102-y

    21. [21]

      Jiang K, Sun S, Zhang L, Lu Y, Wu A G, Cai C Z, Lin H W. Red, green, and blue luminescence by carbon dots: Full-color emission tuning and multicolor cellular imaging[J]. Angew. Chem. Int. Ed., 2015,54(18):5360-5363. doi: 10.1002/anie.201501193

    22. [22]

      Beker S A, Khudur L S, Krohn C, Cole I, Ball A S. Remediation of groundwater contaminated with dye using carbon dots technology: Ecotoxicological and microbial community responses[J]. J. Environ. Manage., 2022,319115634. doi: 10.1016/j.jenvman.2022.115634

    23. [23]

      Wang Y Q, Li X C, Zhao S J, Wang B H, Song X Z, Xiao J F, Lan M H. Synthesis strategies, luminescence mechanisms, and biomedical applications of near-infrared fluorescent carbon dots[J]. Coord. Chem. Rev., 2022,470214703. doi: 10.1016/j.ccr.2022.214703

    24. [24]

      KANG Y C, HUANG Y Y, SUN H Z, ZHENG W L, MA X L, JIANG D L. Nitric acid assisted synthesis of water-soluble green fluorescent carbon dots for pH measurement and Fe3+ ions detection[J]. Chinese J. Inorg. Chem., 2020,36(9):1744-1752.  

    25. [25]

      DONG M H, LI F, XU Y J, DONG Y C, LI W H, KONG C L, CHEN X Y, YANG J Y, SUN J Y. Phosphorescent carbon dots powder: Synthesis and application in anti-background interference latent fingerprint imaging[J]. Chinese J. Inorg. Chem., 2023,39(8):1527-1535.  

    26. [26]

      Tang Y, Yu H Y, Niu X J, Wang Q D, Liu Y Y, Wu Y E. Aptamer-mediated carbon dots as fluorescent signal for ultrasensitive detection of carbendazim in vegetables and fruits[J]. J. Food Compos. Anal., 2022,114104730. doi: 10.1016/j.jfca.2022.104730

    27. [27]

      Yang S T, Cao L, Luo P J G, Lu F S, Wang X, Wang H F, Meziani M J, Liu Y F, Qi G, Sun Y P. Carbon dots for optical imaging in vivo[J]. J. Am. Chem. Soc., 2009,131(32):11308-11309. doi: 10.1021/ja904843x

    28. [28]

      Bertotto L B, Catron T R, Tal T. Exploring interactions between xenobiotics, microbiota, and neurotoxicity in zebrafish[J]. Neurotoxicology, 2020,76:235-244. doi: 10.1016/j.neuro.2019.11.008

    29. [29]

      Delogu P, Di Trapani V, Golosio B, Longo R, Rigon L, Oliva P. Characterization of charge sharing and fluorescence effects by multiple counts analysis in a Pixie-Ⅱ based detection system[J]. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 2023,1047167874. doi: 10.1016/j.nima.2022.167874

    30. [30]

      Luo M, Xie D, Lin Z Y, Sun H Q, Liu Y Y. Toxicology evaluation of overdose hydroxychloroquine on zebrafish (Danio rerio) embryos[J]. Sci Rep, 2022,12(1)18259. doi: 10.1038/s41598-022-23187-9

    31. [31]

      Jia H R, Zhu Y X, Xu K F, Pan G Y, Liu X Y, Qiao Y, Wu F G. Efficient cell surface labelling of live zebrafish embryos: Wash-free fluorescence imaging for cellular dynamics tracking and nanotoxicity evaluation[J]. Chem. Sci., 2019,10(14):4062-4068. doi: 10.1039/C8SC04884C

  • 加载中
    1. [1]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    2. [2]

      Peide ZhuYangjia LiuYaoyao TangSiqi ZhuXinyang LiuLei YinQuan LiuZhiqiang YuQuan XuDixian LuoJuncheng Wang . Bi-doped carbon quantum dots functionalized liposomes with fluorescence visualization imaging for tumor diagnosis and treatment. Chinese Chemical Letters, 2024, 35(4): 108689-. doi: 10.1016/j.cclet.2023.108689

    3. [3]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    4. [4]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    5. [5]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    6. [6]

      Xingyu ChenSihui ZhuangWeiyao YanZhengli ZengJianguo FengHongen CaoLei Yu . Synthesis, antibacterial evaluation, and safety assessment of Se@PLA as a potent bactericide against Xanthomonas oryzae pv. oryzae. Chinese Chemical Letters, 2024, 35(10): 109635-. doi: 10.1016/j.cclet.2024.109635

    7. [7]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

    8. [8]

      Yiling LiZekun GaoXiuxiu YueMinhuan LanXiuli ZhengBenhua WangShuang ZhaoXiangzhi Song . FRET-based two-photon benzo[a] phenothiazinium photosensitizer for fluorescence imaging-guided photodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109133-. doi: 10.1016/j.cclet.2023.109133

    9. [9]

      Kangmin WangLiqiu WanJingyu WangChunlin ZhouKe YangLiang ZhouBijin Li . Multifunctional 2-(2′-hydroxyphenyl)benzoxazoles: Ready synthesis, mechanochromism, fluorescence imaging, and OLEDs. Chinese Chemical Letters, 2024, 35(10): 109554-. doi: 10.1016/j.cclet.2024.109554

    10. [10]

      Bairu MengZongji ZhuoHan YuSining TaoZixuan ChenErik De ClercqChristophe PannecouqueDongwei KangPeng ZhanXinyong Liu . Design, synthesis, and biological evaluation of benzo[4,5]thieno[2,3-d]pyrimidine derivatives as novel HIV-1 NNRTIs. Chinese Chemical Letters, 2024, 35(6): 108827-. doi: 10.1016/j.cclet.2023.108827

    11. [11]

      Hualei XuManman HanHaiqiang LiuLiang QinLulu ChenHao HuRan WuChenyu YangHua GuoJinrong LiJinxiang FuQichen HaoYijun ZhouJinchao FengXiaodong Wang . 4-Nitrocatechol as a novel matrix for low-molecular-weight compounds in situ detection and imaging in biological tissues by MALDI-MSI. Chinese Chemical Letters, 2024, 35(6): 109095-. doi: 10.1016/j.cclet.2023.109095

    12. [12]

      Boran ChengLei CaoChen LiFang-Yi HuoQian-Fang MengGanglin TongXuan WuLin-Lin BuLang RaoShubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969

    13. [13]

      Rui ChengXin HuangTingting ZhangJiazhuang GuoJian YuSu Chen . Solid superacid catalysts promote high-performance carbon dots with narrow-band fluorescence emission for luminescence solar concentrators. Chinese Chemical Letters, 2024, 35(8): 109278-. doi: 10.1016/j.cclet.2023.109278

    14. [14]

      Jing-Jing ZhangLujun LouRui LvJiahui ChenYinlong LiGuangwei WuLingchao CaiSteven H. LiangZhen Chen . Recent advances in photochemistry for positron emission tomography imaging. Chinese Chemical Letters, 2024, 35(8): 109342-. doi: 10.1016/j.cclet.2023.109342

    15. [15]

      Shihong WuRonghui ZhouHang ZhaoPeng Wu . Sonoafterglow luminescence for in vivo deep-tissue imaging. Chinese Chemical Letters, 2024, 35(10): 110026-. doi: 10.1016/j.cclet.2024.110026

    16. [16]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    17. [17]

      Ying XuChengying ShenHailong YuanWei Wu . Mapping multiple phases in curcumin binary solid dispersions by fluorescence contrasting. Chinese Chemical Letters, 2024, 35(9): 109324-. doi: 10.1016/j.cclet.2023.109324

    18. [18]

      Yuxin LiChengbin LiuQiuju LiShun Mao . Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: A mini review. Chinese Chemical Letters, 2024, 35(10): 109541-. doi: 10.1016/j.cclet.2024.109541

    19. [19]

      Zikang HuHengjie ZhangZhengqiu LiTianbao ZhaoZhipeng GuQijuan YuanBaoshu Chen . Multifunctional photothermal hydrogels: Design principles, various functions, and promising biological applications. Chinese Chemical Letters, 2024, 35(10): 109527-. doi: 10.1016/j.cclet.2024.109527

    20. [20]

      Daheng WenWeiwei FangYongmei LiuTao Tu . Valorization of carbon dioxide with alcohols. Chinese Chemical Letters, 2024, 35(7): 109394-. doi: 10.1016/j.cclet.2023.109394

Metrics
  • PDF Downloads(0)
  • Abstract views(45)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return