Citation: Wenlong LI, Xinyu JIA, Jie LING, Mengdan MA, Anning ZHOU. Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421 shu

Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst

Figures(7)

  • To improve the catalytic activity of the photothermal CO2 hydrogenation In2O3 catalyst, a Mg(OH)2-In(OH)3 precursor was prepared by the homogeneous hydrothermal method, and a Mg-doped In2O3-x (Mg-In2O3-x) catalyst enriched with oxygen vacancies was obtained by the following high-temperature calcination and H2-reducing treatment. The catalyst was evaluated for its photothermal catalytic performance of CO2 hydrogenation in a photothermal fixed -bed reactor. The results demonstrated that Mg-In2O3-x achieved an impressive CO2 conversion rate of 31.20% with a CO production rate of 14.22 mmol·gcat-1·h-1 and selectivity of 100% in the light reaction at 300 ℃. The characterization results confirmed that the Mg doping into the In2O3 lattice promotes the formation of more surface oxygen vacancies, which dramatically increases the response efficiency to visible light and slows down the recombination of photogenerated electron-hole. This is the main reason for the enhancement of the photothermal catalytic performance.
  • 加载中
    1. [1]

      Li Y G, Hao J C, Song H, Zhang F Y, Bai X H, Meng X G, Zhang H Y, Wang S F, Hu Y, Ye J H. Selective light absorber-assisted single nickel atom catalysts for ambient sunlight-driven CO2 methanation[J]. Nat. Commun., 2019,10(1):4359-4368. doi: 10.1038/s41467-019-12328-w

    2. [2]

      XU L M, HUANG H B, SHEN J H, YOU Q H. Synthesis of Zn-doped BiOBr with enhanced photoreduction CO2 activity under visible light irradiation[J]. Chinese J. Inorg. Chem., 2020,36(12):2395-2403. doi: 10.11862/CJIC.2020.262

    3. [3]

      Merkel T C, Lin H Q, Wei X T, Baker R. Power plant post-combustion carbon dioxide capture: An opportunity for membranes[J]. J. Membr. Sci., 2010,359(1/2):126-139.

    4. [4]

      Assima G P, Larachi F, Molson J, Beaudong G. Comparative study of five Québec ultramafic mining residues for use in direct ambient carbon dioxide mineral sequestration[J]. Chem. Eng. J., 2014,245:56-64. doi: 10.1016/j.cej.2014.02.010

    5. [5]

      Ling J, Zhou A N, Wang W Z, Jia X Y, Ma M D, Li Y Z. One-pot method synthesis of bimetallic MgCu-MOF-74 and its CO2 adsorption under visible light[J]. ACS Omega, 2022,7(23):19920-19929. doi: 10.1021/acsomega.2c01717

    6. [6]

      Wang L, Ghoussoub M, Wang H, Shao Y, Sun W, Tountas A A, Wood T E, Li H, Loh J Y Y, Dong Y C, Xia M K, Li Y, Wang S H, Jia J, Qiu C Y, Qian C X, Kherani N P, He L, Zhang X H, Ozin G A. Photocatalytic hydrogenation of carbon dioxide with high selectivity to methanol at atmospheric pressure[J]. Joule, 2018,2(7):1369-1381. doi: 10.1016/j.joule.2018.03.007

    7. [7]

      DONG Y A, FENG Z, ZHU D R. Syntheses of two Mg-based metalorganic frameworks by a coordination competitive strategy and the selective CO2 capture[J]. Chinese J. Inorg. Chem., 2023,39(1):181-190.  

    8. [8]

      Lingampalli S R, Ayyub M M, Rao C N R. Recent progress in the photocatalytic reduction of carbon dioxide[J]. ACS Omega, 2017,2(6):2740-2748. doi: 10.1021/acsomega.7b00721

    9. [9]

      Ameta R, Panchal S, Ameta N, Ameta S C. Photocatalytic reduction of carbon dioxide[J]. Mater. Sci. Forum, 2013,764:83-96. doi: 10.4028/www.scientific.net/MSF.764.83

    10. [10]

      DUAN F Y, ZHOU A N, CHEN F X, LING J, MA M D, JIA X Y. Controllable preparation and photocatalytic performance of graphitic carbon nitride nanosheets[J]. Journal of the Chinese Ceramic Society, 2021,49(10):2053-2060.  

    11. [11]

      MA M D, ZHOU A N, DUAN F Y, JIA X Y, LING J. Preparation of Ti1Li3Al2-LDHs/g-C3N4 composites and its photocatalytic properties in CO2-toluene reaction system[J]. Acta Materiae Compositae Sinica, 2023,40(3):1522-1533.  

    12. [12]

      XU L L, ZHOU M T, YANG A L, WANG J X, ZHOU T F, ZHANG Y. Preparation of dumbbell-like magnetic gold mesoporous silicon microspheres and determination of magnetic/photo thermo and catalytic performance[J]. Chinese J. Inorg. Chem., 2019,35(6):971-977.  

    13. [13]

      Li Z H, Liu J J, Zhao Y F, Shi R, Waterhouse G I N, Wang Y S, Wu L Z, Tung C H, Zhang T R. Photothermal hydrocarbon synthesis using alumina-supported cobalt metal nanoparticle catalysts derived from layered-double-hydroxide nanosheets[J]. Nano Energy, 2019,60:467-475. doi: 10.1016/j.nanoen.2019.03.069

    14. [14]

      Wang J C, Qiao X, Shi W N, Gao H L, Guo L C. Enhanced photothermal selective conversion of CO2 to CH4 in water vapor over rod-like Cu and N co-doped TiO2[J]. Chin. J. Struct. Chem., 2022,41(12):33-42.

    15. [15]

      Deng B W, Song H, Wang Q, Hong J N, Song S, Zhang Y W, Peng K, Zhang H W, Kako T, Ye J H. Highly efficient and stable photothermal catalytic CO2 hydrogenation to methanol over Ru/In2O3 under atmospheric pressure[J]. Appl. Catal. B-Environ., 2023,327122471. doi: 10.1016/j.apcatb.2023.122471

    16. [16]

      Qi Y H, Song L Z, Ouyang S X, Liang X C, Ning S B, Zhang Q Q, Ye J H. Photoinduced defect engineering: Enhanced photothermal catalytic performance of 2D Black In2O3-x nanosheets with bifunctional oxygen vacancies[J]. Adv. Mater., 2019,32(6)1903915.

    17. [17]

      Wang S, Wang P F, Qin Z F, Yan W J, Dong M, Li J F, Wang J G, Fan W B. Enhancement of light olefin production in CO2 hydrogenation over In2O3-based oxide and SAPO-34 composite[J]. J. Catal., 2020,391:459-470. doi: 10.1016/j.jcat.2020.09.010

    18. [18]

      Qin B, Zhou Z M, Li S G, Gao P. Understanding the structure-performance relationship of cubic In2O3 catalysts for CO2 hydrogenation[J]. J. CO2 Util., 2021,49101543. doi: 10.1016/j.jcou.2021.101543

    19. [19]

      Tao H C, Fan Q, Ma T, Liu S Z, Gysling H, Texter J, Guo F, Sun Z Y. Two-dimensional materials for energy conversion and storage[J]. Prog. Mater. Sci., 2020,111100637. doi: 10.1016/j.pmatsci.2020.100637

    20. [20]

      Wang L, Dong Y C, Yan T J, Hu Z X, Ali F M, Meira D M, Duchesne P N, Loh J Y Y, Qiu C Y, Storey E E, Xu Y F, Sun W, Ghoussoub M, Kherani N P, Helmy A S, Ozin G A. Black indium oxide a photothermal CO2 hydrogenation catalyst[J]. Nat. Commun., 2020,11(1)2432. doi: 10.1038/s41467-020-16336-z

    21. [21]

      Yang Y X, Pan Y X, Tu X, Liu C J. Nitrogen doping of indium oxide for enhanced photocatalytic reduction of CO2 to methanol[J]. Nano Energy, 2022,101107613. doi: 10.1016/j.nanoen.2022.107613

    22. [22]

      Zhu X W, Yang J M, Zhu X L, Yuan J J, Zhou M, She X J, Yu Q, Song Y H, She Y B, Hua Y J, Li H M, Xu H. Exploring deep effects of atomic vacancies on activating CO2 photoreduction via rationally designing indium oxide photocatalysts[J]. Chem. Eng. J., 2021,422129888. doi: 10.1016/j.cej.2021.129888

    23. [23]

      Zheng M, Liu J N, Xiao X D, Wang H L, Jiang B J, Li Q, Liu M, Zhao C, Zhang L P, Zhou J. Creation of Mo active sites on indium oxide microrods for photocatalytic amino acid production[J]. Sci. China Mater., 2021,65(5):1285-1293.

    24. [24]

      Sil A, Deck M J, Goldfine E A, Zhang C, Patel S V, Flynn S, Liu H Y, Chien P H, Poeppelmeier K R, Dravid V P, Bedzyk M J, Medvedeva J E, Hu Y Y, Facchetti A, Marks T J. Fluoride doping in crystalline and amorphous indium oxide semiconductors[J]. Chem. Mat., 2022,34(7):3253-3266. doi: 10.1021/acs.chemmater.2c00053

    25. [25]

      YANG F F, ZHAO S X, ZHOU W, NI Z H. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol[J]. CIESC J., 2023,74(6):3366-3374.  

    26. [26]

      Qi Y H, Jiang J W, Liang X C, Ouyang S X, Mi W B, Ning S B, Zhao L, Ye J H. Fabrication of black In2O3 with dense oxygen vacancy through dual functional carbon doping for enhancing photothermal CO2 hydrogenation[J]. Adv. Funct. Mater., 2021,31(22)2100908. doi: 10.1002/adfm.202100908

    27. [27]

      Das A, Liu D Y, Wary R R, Vasenko A S, Prezhdo O V, Nair R G. Enhancement of photocatalytic and photoelectrochemical performance of ZnO by Mg doping: Experimental and density functional theory insights[J]. J. Phys. Chem. Lett., 2023,14(18):4134-4141. doi: 10.1021/acs.jpclett.3c00736

    28. [28]

      Wang J, Sun K Y, Jia X Y, Liu C J. CO2 hydrogenation to methanol over Rh/In2O3 catalyst[J]. Catal. Today, 2021,365:341-348. doi: 10.1016/j.cattod.2020.05.020

    29. [29]

      Guo C F, Li L, Chen F, Ning J Q, Zhong Y J, Hu Y. One-step phosphorization preparation of gradient-P-doped CdS/CoP hybrid nanorods having multiple channel charge separation for photocatalytic reduction of water[J]. J. Colloid Interface Sci., 2021,596:431-441. doi: 10.1016/j.jcis.2021.03.170

    30. [30]

      Li R, Sun L M, Zhan W W, Li Y A, Wang X J, Han X G. Engineering an effective noble-metal-free photocatalyst for hydrogen evolution: Hollow hexagonal porous micro-rods assembled from In2O3@carbon core-shell nanoparticles[J]. J. Mater. Chem. A, 2018,6(32):15747-15754. doi: 10.1039/C8TA04916E

    31. [31]

      Shen C Y, Sun K H, Zhang Z T, Rui N, Jia X Y, Mei D H, Liu C J. Highly active Ir/In2O3 catalysts for selective hydrogenation of CO2 to methanol: Experimental and theoretical studies[J]. ACS Catal., 2021,11(7):4036-4046. doi: 10.1021/acscatal.0c05628

    32. [32]

      Fan Y J, Wu S F. A graphene-supported copper-based catalyst for the hydrogenation of carbon dioxide to form methanol[J]. J. CO2 Util., 2016,16:150-156. doi: 10.1016/j.jcou.2016.07.001

    33. [33]

      Rui N, Wang Z Y, Sun K H, Ye J Y, Ge Q F, Liu C J. CO2 hydrogenation to methanol over Pd/In2O3: effects of Pd and oxygen vacancy[J]. Appl. Catal. B-Environ., 2017,218:488-497. doi: 10.1016/j.apcatb.2017.06.069

    34. [34]

      Jia X Y, Sun K H, Wang J, Shen C Y, Liu C J. Selective hydrogenation of CO2 to methanol over Ni/In2O3 catalyst[J]. J. Energy Chem., 2020,50:409-415. doi: 10.1016/j.jechem.2020.03.083

    35. [35]

      Yan T J, Li N, Wang L L, Ran W G, Duchesne P N, Wan L L, Nguyen N T, Wang L, Xia M K, Ozin G A. Bismuth atom tailoring of indium oxide surface frustrated Lewis pairs boosts heterogeneous CO2 photocatalytic hydrogenation[J]. Nat. Commun., 2020,11(1)6095. doi: 10.1038/s41467-020-19997-y

    36. [36]

      Chen Y, Li Y G, Luo N D, Shang W K, Shi S S, Li H J, Liang Y D, Zhou A N. Kinetic comparison of photocatalysis with H2O2-free photoFenton process on BiVO4 and the effective antibiotic degradation[J]. Chem. Eng. J., 2022,429132577. doi: 10.1016/j.cej.2021.132577

    37. [37]

      He L, Wood T E, Wu B, Dong Y C, Hoch L B, Reyes L M, Wang D, Kübel C, Qian C X, Jia J, Liao K, Brien P G O', Sandhel A, Loh J Y Y, Szymanski P, Kherani N P, Sum T C, Mims C A, Ozin G A. Spatial separation of charge carriers in In2O3-x(OH)y nanocrystal superstructures for enhanced gas-phase photocatalytic activity[J]. ACS Nano, 2016,10(5):5578-5586. doi: 10.1021/acsnano.6b02346

    38. [38]

      Li L, Guo C F, Shen J L, Ning J Q, Zhong Y J, Hu Y. Construction of sugar-gourd-shaped CdS/Co1-xS hollow hetero-nanostructure as an efficient Z-scheme photocatalyst for hydrogen generation[J]. Chem. Eng. J., 2020,400125925. doi: 10.1016/j.cej.2020.125925

    39. [39]

      Sayed M, Xu F Y, Kuang P Y, Low J X, Wang S Y, Zhang L Y, Yu J G. Sustained CO2-photoreduction activity and high selectivity over Mn, C-codoped ZnO core-triple shell hollow spheres[J]. Nat. Commun., 2021,12(1)4936. doi: 10.1038/s41467-021-25007-6

    40. [40]

      Su T M, Men C Z, Chen L Y, Chu B X, Luo X, Ji H B, Chen J H, Qin Z Z. Sulfur vacancy and Ti3C2Tx cocatalyst synergistically boosting interfacial charge transfer in 2D/2D Ti3C2Tx/ZnIn2S4 heterostructure for enhanced photocatalytic hydrogen evolution[J]. Adv. Sci., 2022,92103715. doi: 10.1002/advs.202103715

    41. [41]

      Yu X Y, Chen Y J, Zhang Q Y, Yin Y J, Sun D, Ru Y X, Tian G H. Carbon and nitrogen co-doped In2O3 porous nanosheets with oxygen vacancies for remarkable photocatalytic CO2 conversion[J]. Surf. Interfaces, 2023,38102789. doi: 10.1016/j.surfin.2023.102789

    42. [42]

      Bai S, Zhang N, Gao C, Xiong Y J. Defect engineering in photocatalytic materials[J]. Nano Energy, 2018,53:296-336. doi: 10.1016/j.nanoen.2018.08.058

    43. [43]

      Pan R R, Liu J, Zhang J T. Defect engineering in 2D photocatalytic materials for CO2 reduction[J]. ChemNanoMat, 2021,7(7):737-747. doi: 10.1002/cnma.202100087

    44. [44]

      Sun K H, Rui N, Zang Z T, Sun Z Y, Ge Q F, Liu C J. A highly active Pt/In2O3 catalyst for CO2 hydrogenation to methanol with enhanced stability[J]. Green Chem., 2020,22(15):5059-5066. doi: 10.1039/D0GC01597K

  • 加载中
    1. [1]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    2. [2]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    3. [3]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    4. [4]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    5. [5]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    6. [6]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    7. [7]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    8. [8]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    9. [9]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    10. [10]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    11. [11]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    12. [12]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    13. [13]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    14. [14]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    15. [15]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    16. [16]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    17. [17]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    18. [18]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    19. [19]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    20. [20]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

Metrics
  • PDF Downloads(0)
  • Abstract views(32)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return